636 research outputs found
Helicase on DNA: A Phase coexistence based mechanism
We propose a phase coexistence based mechanism for activity of helicases,
ubiquitous enzymes that unwind double stranded DNA. The helicase-DNA complex
constitutes a fixed-stretch ensemble that entails a coexistence of domains of
zipped and unzipped phases of DNA, separated by a domain wall. The motor action
of the helicase leads to a change in the position of the fixed constraint
thereby shifting the domain wall on dsDNA. We associate this off-equilibrium
domain wall motion with the unzipping activity of helicase. We show that this
proposal gives a clear and consistent explanation of the main observed features
of helicases.Comment: Revtex4. 5 pages. 4 figures. Published versio
Structural basis for the RING catalyzed synthesis of K63 linked ubiquitin chains
This work was supported by grants from Cancer Research UK (C434/A13067), the Wellcome Trust (098391/Z/12/Z) and Biotechnology and Biological Sciences Research Council (BB/J016004/1).The RING E3 ligase catalysed formation of lysine 63 linked ubiquitin chains by the Ube2V2–Ubc13 E2 complex is required for many important biological processes. Here we report the structure of the RING domain dimer of rat RNF4 in complex with a human Ubc13~Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with Lys63 in a position that could lead to attack on the linkage between the donor (second) ubiquitin and Ubc13 that is held in the active “folded back” conformation by the RING domain of RNF4. The interfaces identified in the structure were verified by in vitro ubiquitination assays of site directed mutants. This represents the first view of the synthesis of Lys63 linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase mediated catalysis.PostprintPeer reviewe
Chemoproteomics reveals Toll-like receptor fatty acylation
Partial funding for Open Access provided by The Ohio State University Open Access Fund.Background: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity.
This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular
interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification
and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to
identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells.
Results: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been
previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new
proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was
uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2
S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased
inflammatory response to microbial ligands.
Conclusions: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell
type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. Spalmitoylation
of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue
for modulation of TLR2 inflammatory activity.This work was supported by funding from the NIH/NIAID (grant R00AI095348 to J.S.Y.), the NIH/NIGMS (R01GM087544 to HCH), and the Ohio State University Public Health Preparedness for Infectious Diseases (PHPID) program. NMC is supported by the Ohio State University Systems and Integrative Biology Training Program (NIH/NIGMS grant T32GM068412). BWZ is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362)
Valproic acid and fatalities in children: a review of individual case safety reports in VigiBase
Introduction
Valproic acid is an effective first line drug for the treatment of epilepsy. Hepatotoxicity is a rare and potentially fatal adverse reaction for this medicine.
Objective
Firstly to characterise valproic acid reports on children with fatal outcome and secondly to determine reporting over time of hepatotoxicity with fatal outcome.
Methods
Individual case safety reports (ICSRs) for children ≤17 years with valproic acid and fatal outcome were retrieved from the WHO Global ICSR database, VigiBase, in June 2013. Reports were classified into hepatotoxic reactions or other reactions. Shrinkage observed-to-expected ratios were used to explore the relative reporting trend over time and for patient age. The frequency of polytherapy, i.e. reports with more than one antiepileptic medicine, was investigated.
Results
There have been 268 ICSRs with valproic acid and fatal outcome in children, reported from 25 countries since 1977. A total of 156 fatalities were reported with hepatotoxicity, which has been continuously and disproportionally reported over time. There were 31 fatalities with pancreatitis. Other frequently reported events were coma/encephalopathy, seizures, respiratory disorders and coagulopathy. Hepatotoxicity was disproportionally and most commonly reported in children aged 6 years and under (104/156 reports) but affected children of all ages. Polytherapy was significantly more frequently reported for valproic acid with fatal outcome (58%) compared with non-fatal outcome (34%).
Conclusion
Hepatotoxicity remains a considerable problem. The risk appears to be greatest in young children (6 years and below) but can occur at any age. Polytherapy is commonly reported and seems to be a risk factor for hepatotoxicity, pancreatitis and other serious adverse drug reactions with valproic acid
Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity
Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub)(1). Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates(2). By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate(3,4). Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism(5). Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity
Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
n/
On Biomineralization: Enzymes Switch on Mesocrystal Assembly
Cellular machineries guide the bottom-up pathways toward crystal superstructures based on the transport of inorganic precursors and their precise integration with organic frameworks. The biosynthesis of mesocrystalline spines entails concerted interactions between biomolecules and inorganic precursors; however, the bioinorganic interactions and interfaces that regulate material form and growth as well as the selective emergence of structural complexity in the form of nanostructured crystals are not clear. By investigating mineral nucleation under the regulation of recombinant proteins, we show that SpSM50, a matrix protein of the sea urchin spine, stabilizes mineral precursors via vesicle-confinement, a function conferred by a low-complexity, disordered region. Site-specific proteolysis of this domain by a collagenase initiates phase transformation of the confined mineral phase. The residual C-type lectin domain molds the fluidic mineral precursor into hierarchical mesocrystals identical to structural crystal modules constituting the biogenic mineral. Thus, the regulatory functions of proteolytic enzymes can guide biomacromolecular domain constitutions and interfaces, in turn determining inorganic phase transformations toward hybrid materials as well as integrating organic and inorganic components across hierarchical length scales. Bearing striking resemblance to biogenic mineralization, these hybrid materials recruit bioinorganic interactions which elegantly intertwine nucleation and crystallization phenomena with biomolecular structural dynamics, hence elucidating a long-sought key of how nature can orchestrate complex biomineralization processes
Degradation of p53 by Human Alphapapillomavirus E6 Proteins Shows a Stronger Correlation with Phylogeny than Oncogenicity
Human Papillomavirus (HPV) E6 induced p53 degradation is thought to be an essential activity by which high-risk human Alphapapillomaviruses (alpha-HPVs) contribute to cervical cancer development. However, most of our understanding is derived from the comparison of HPV16 and HPV11. These two viruses are relatively distinct viruses, making the extrapolation of these results difficult. In the present study, we expand the tested strains (types) to include members of all known HPV species groups within the Alphapapillomavirus genus.We report the biochemical activity of E6 proteins from 27 HPV types representing all alpha-HPV species groups to degrade p53 in human cells. Expression of E6 from all HPV types epidemiologically classified as group 1 carcinogens significantly reduced p53 levels. However, several types not associated with cancer (e.g., HPV53, HPV70 and HPV71) were equally active in degrading p53. HPV types within species groups alpha 5, 6, 7, 9 and 11 share a most recent common ancestor (MRCA) and all contain E6 ORFs that degrade p53. A unique exception, HPV71 E6 ORF that degraded p53 was outside this clade and is one of the most prevalent HPV types infecting the cervix in a population-based study of 10,000 women. Alignment of E6 ORFs identified an amino acid site that was highly correlated with the biochemical ability to degrade p53. Alteration of this amino acid in HPV71 E6 abrogated its ability to degrade p53, while alteration of this site in HPV71-related HPV90 and HPV106 E6s enhanced their capacity to degrade p53.These data suggest that the alpha-HPV E6 proteins' ability to degrade p53 is an evolved phenotype inherited from a most recent common ancestor of the high-risk species that does not always segregate with carcinogenicity. In addition, we identified an amino-acid residue strongly correlated with viral p53 degrading potential
Association of p53 codon 72 polymorphism with advanced lung cancer: the Arg allele is preferentially retained in tumours arising in Arg/Pro germline heterozygotes
The association of p53 codon 72 polymorphism with cancer has been investigated by several scientific groups with controversial results. In the present study, we examined the genotypic frequency of this polymorphism in 54 patients with advanced lung cancer and 99 normal controls from the geographical region of Greece. Sputum and bronchial washing samples from each patient were assayed for the presence of human papillomavirus. Codon 72 heterozygous (Arg/Pro) patients were also analysed for loss of heterozygosity at the TP53 locus, in order to determine the lost p53 allele (Arg or Pro). p53 Arg/Arg genotype was significantly increased in lung cancer patients compared to normal controls (50% vs 24.2%, P<0.002). Human papillomavirus was detected only in two patients (3.7%). Loss of heterozygosity at the TP53 locus was found in 14 out of 27 Arg/Pro patients (51.85%). The Pro allele was lost in 11 cases (78.6%), while the Arg allele was lost in three (21.4%). Our results suggest that p53 codon 72 Arg homozygosity is associated with advanced lung cancer, and that the Arg allele is preferentially retained in patients heterozygous for this polymorphism. On the other hand, human papillomavirus infection does not seem to play an important role in lung carcinogenesis
Immunohistochemical analysis of p53 in vulval intraepithelial neoplasia and vulval squamous cell carcinoma
Human papillomavirus (HPV) is thought to cause some vulval squamous cell carcinomas (VSCC) by degrading p53 product. Evidence on whether HPV-negative VSCC results from p53 mutation is conflicting. We performed immunohistochemistry for p53 product on 52 cases of lone vulval intraepithelial neoplasia (VIN), 21 cases of VIN with concurrent VSCC and 67 cases of VSCC. We had previously performed HPV detection and loss of heterozygosity (LOH) analyses on these samples. Abnormal p53 immunoreactivity (p53-positive) rates in HPV-positive VSCC and HPV-negative VSCC were 22% (12/54) and 31% (4/13), respectively (
- …
