458 research outputs found
Density-dependent interactions and structure of charged colloidal dispersions in the weak screening regime
We determine the structure of charge-stabilized colloidal suspensions at low
ionic strength over an extended range of particle volume fractions using a
combination of light and small angle neutron scattering experiments. The
variation of the structure factor with concentration is analyzed within a
one-component model of a colloidal suspension. We show that the observed
structural behavior corresponds to a non-monotonic density dependence of the
colloid effective charge and the mean interparticle interaction energy. Our
findings are corroborated by similar observations from primitive model computer
simulations of salt-free colloidal suspensions.Comment: Revised version, accepted to Phys. Rev. Let
Spatial field correlation, the building block of mesoscopic fluctuations
The absence of self averaging in mesoscopic systems is a consequence of
long-range intensity correlation. Microwave measurements suggest and
diagrammatic calculations confirm that the correlation function of the
normalized intensity with displacement of the source and detector,
and , respectively, can be expressed as the sum of three terms, with
distinctive spatial dependences. Each term involves only the sum or the product
of the square of the field correlation function, . The
leading-order term is the product, the next term is proportional to the sum.
The third term is proportional to .Comment: Submitted to PR
Fluctuations of the electromagnetic local density of states as a probe for structural phase switching
We study the statistics of the fluorescence decay rates for single quantum emitters embedded in a scattering medium undergoing a phase transition. Under certain circumstances, the structural properties of the scattering medium explore a regime in which the system dynamically switches between two different phases. While in that regime the light-scattering properties of both phases are hardly distinguishable, we demonstrate that the lifetime statistics of single emitters with low diffusivity is clearly dependent on the dynamical state in which the medium evolves. Hence, lifetime statistics provides clear signatures of phase switching in systems where light scattering does not
Coherent backscattering of light by atoms in the saturated regime
We present the first calculation of coherent backscattering with inelastic
scattering by saturated atoms. We consider the scattering of a
quasi-monochromatic laser pulse by two distant atoms in free space. By
restricting ourselves to scattering of two photons, we employ a perturbative
approach, valid up to second order in the incident laser intensity. The
backscattering enhancement factor is found to be smaller than two (after
excluding single scattering), indicating a loss of coherence between the doubly
scattered light emitted by both atoms. Since the undetected photon carries
information about the path of the detected photon, the coherence loss can be
explained by a which-path argument, in analogy with a double-slit experiment.Comment: 16 pages, 10 figure
Characterization of anisotropic nano-particles by using depolarized dynamic light scattering in the near field
Light scattering techniques are widely used in many fields of condensed and
sof t matter physics. Usually these methods are based on the study of the
scattered light in the far field. Recently, a new family of near field
detection schemes has been developed, mainly for the study of small angle light
scattering. These techniques are based on the detection of the light intensity
near to the sample, where light scattered at different directions overlaps but
can be distinguished by Fourier transform analysis. Here we report for the
first time data obtained with a dynamic near field scattering instrument,
measuring both polarized and depolarized scattered light. Advantages of this
procedure over the traditional far field detection include the immunity to
stray light problems and the possibility to obtain a large number of
statistical samples for many different wave vectors in a single instantaneous
measurement. By using the proposed technique we have measured the translational
and rotational diffusion coefficients of rod-like colloidal particles. The
obtained data are in very good agreement with the data acquired with a
traditional light scattering apparatus.Comment: Published in Optics Express. This version has changes in bibliograph
Statistical Signatures of Photon Localization
The realization that electron localization in disordered systems (Anderson
localization) is ultimately a wave phenomenon has led to the suggestion that
photons could be similarly localized by disorder. This conjecture attracted
wide interest because the differences between photons and electrons - in their
interactions, spin statistics, and methods of injection and detection - may
open a new realm of optical and microwave phenomena, and allow a detailed study
of the Anderson localization transition undisturbed by the Coulomb interaction.
To date, claims of three-dimensional photon localization have been based on
observations of the exponential decay of the electromagnetic wave as it
propagates through the disordered medium. But these reports have come under
close scrutiny because of the possibility that the decay observed may be due to
residual absorption, and because absorption itself may suppress localization.
Here we show that the extent of photon localization can be determined by a
different approach - measurement of the relative size of fluctuations of
certain transmission quantities. The variance of relative fluctuations
accurately reflects the extent of localization, even in the presence of
absorption. Using this approach, we demonstrate photon localization in both
weakly and strongly scattering quasi-one-dimensional dielectric samples and in
periodic metallic wire meshes containing metallic scatterers, while ruling it
out in three-dimensional mixtures of aluminum spheres.Comment: 5 pages, including 4 figure
Self-diffusion and structural properties of confined fluids in dynamic coexistence
Self-diffusion and radial distribution functions are studied in a strongly confined Lennard-Jones fluid. Surprisingly, in the solid–liquid phase transition region, where the system exhibits dynamic coexistence, the self-diffusion constants are shown to present up to three-fold variations from solid to liquid phases at fixed temperature, while the radial distribution function corresponding to both the liquid and the solid phases are essentially indistinguishable
Coherent Backscattering of Light by Cold Atoms
Light propagating in an optically thick sample experiences multiple
scattering. It is now known that interferences alter this propagation, leading
to an enhanced backscattering, a manifestation of weak localization of light in
such diffuse samples. This phenomenon has been extensively studied with
classical scatterers. In this letter we report the first experimental evidence
for coherent backscattering of light in a laser-cooled gas of Rubidium atoms.Comment: 4 pages REVTEX, 1 page color image GIF, accepted for publication in
Phys. Rev. Let
Field and intensity correlations in random media
Measurements of the microwave field transmitted through a random medium
allows direct access to the field correlation function, whose complex square is
the short range or C1 contribution to the intensity correlation function C. The
frequency and spatial correlation function are compared to their Fourier pairs,
the time of flight distribution and the specific intensity, respectively. The
longer range contribution to intensity correlation is obtained directly by
subtracting C1 from C and is in good agreement with theory.Comment: 9 pages, 5 figures, submitted to Phys.Rev.
Propagation inhibition and wave localization in a 2D random liquid medium
Acoustic propagation and scattering in water containing many parallel
air-filled cylinders is studied. Two situations are considered and compared:
(1) wave propagating through the array of cylinders, imitating a traditional
experimental setup, and (2) wave transmitted from a source located inside the
ensemble. We show that waves can be blocked from propagation by disorders in
the first scenario, but the inhibition does not necessarily imply wave
localization. Furthermore, the results reveal the phenomenon of wave
localization in a range of frequencies.Comment: Typos in Fiures are correcte
- …
