242 research outputs found
Study of 2b-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on
neutrinoless double beta decay of Mo-100 (T_{1/2} > 3.1 10^{23} y, 90% CL) and
Se-82 (T_{1/2} > 1.4 10^{23} y, 90% CL) have been obtained. The corresponding
limits on the effective majorana neutrino mass are: m < (0.8-1.2) eV and m <
(1.5-3.1) eV, respectively. Also the limits on double-beta decay with Majoron
emission are: T_{1/2} > 1.4 10^{22} y (90% CL) for Mo-100 and T_{1/2}> 1.2
10^{22} y (90%CL) for Se-82. Corresponding bounds on the Majoron-neutrino
coupling constant are g < (0.5-0.9) 10^{-4} and < (0.7-1.6) 10^{-4}.
Two-neutrino 2b-decay half-lives have been measured with a high accuracy,
T_{1/2} Mo-100 = [7.68 +- 0.02(stat) +- 0.54(syst) ] 10^{18} y and T_{1/2}
Se-82 = [10.3 +- 0.3(stat) +- 0.7(syst) ] 10^{19} y.Comment: 5 pages, 4 figure
Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"
Technical design and performance of the NEMO3 detector
The development of the NEMO3 detector, which is now running in the Frejus
Underground Laboratory (L.S.M. Laboratoire Souterrain de Modane), was begun
more than ten years ago. The NEMO3 detector uses a tracking-calorimeter
technique in order to investigate double beta decay processes for several
isotopes. The technical description of the detector is followed by the
presentation of its performance.Comment: Preprint submitted to Nucl. Instrum. Methods A Corresponding author:
Corinne Augier ([email protected]
Global regime shift dynamics of catastrophic sea urchin overgrazing
A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.Peer reviewe
Distribution, Abundance and Size Structure of Arrow Squid (Nototodarus sp.) off New Zealand
Two species of arrow squid (Nototodarus sp.) were sampled with bottom trawl during nine research surveys along the north and east coast of South Island, New Zealand, from January 1982 to March 1983. There was minimal overlap between the two species. Species 1 was associated with subtropical water along the north coast (Tasman Bay) of South Island and Species 2 with the Subtropical Convergence Zone and subantarctic water along the east coast. Catches of Species 2 varied markedly with geographic location, depth (from 50 to 500 m) and sampling period, but were consistently lowest in January of both years. Differences in the size composition of Species 2 with depth were associated with differences in the relative abundance of juveniles. Juveniles of Species 2 were most abundant at 50 and 100 m and were rare or absent at 30 and 500 m. Size distributions of males and females of both species were generally similar for each depth and sampling period. Modal sizes (dorsal mantle length) of Species 1 indicated growth rates of 3.0-4.5 cm per month for three cohorts which were separated by about 6 months. Spawning of Species 1 probably occurs around November and April of each year, and maximal size (about 40 cm) is attained in about 1 year. Size distributions of Species 2, were polymodal and did not give clear indications of growth or spawning period. This may be due to a mixture of several subpopulations of Species 2 along the east coast of South Island, differing in age structure, spawning period and growth rate
The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions
The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities
Effects of El Niño and La Niña Southern Oscillation events on the adrenocortical responses to stress in birds of the Galapagos Islands
El Niño Southern Oscillation events (ENSO) and the subsequent opposite weather patterns in the following months and years (La Niña) have major climatic impacts, especially on oceanic habitats, affecting breeding success of both land and sea birds. We assessed corticosterone concentrations from blood samples during standardized protocols of capture, handling and restraint to simulate acute stress from 12 species of Galapagos Island birds during the ENSO year of 1998 and a La Niña year of 1999. Plasma levels of corticosterone were measured in samples collected at capture (to represent non-stressed baseline) and subsequently up to 1 h post-capture to give maximum corticosterone following acute stress, and total amount of corticosterone that the individual was exposed to during the test period (integrated corticosterone). Seabird species that feed largely offshore conformed to the brood value hypothesis whereas inshore feeding species showed less significant changes. Land birds mostly revealed no differences in the adrenocortical responses to acute stress from year to year with the exception of two small species (<18 g) that had an increase in baseline and stress responses in the ENSO year - contrary to predictions. We suggest that a number of additional variables, including body size and breeding stage may have to be considered as explanations for why patterns in some species deviated from our predictions. Nevertheless, comparative studies like ours are important for improving our understanding of the hormonal and reproductive responses of vertebrates to large scale weather patterns and global climate change in general
Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2
Seaweeds are key species of the Baltic Sea benthic ecosystems. They are the substratum of numerous fouling epibionts like bryozoans and tubeworms. Several of these epibionts bear calcified structures and could be impacted by the high pCO2 events of the late summer upwellings in the Baltic nearshores. Those events are expected to increase in strength and duration with global change and ocean acidification. If calcifying epibionts are impacted by transient acidification as driven by upwelling events, their increasing prevalence could cause a shift of the fouling communities toward fleshy species. The aim of the present study was to test the sensitivity of selected seaweed macrofoulers to transient elevation of pCO2 in their natural microenvironment, i.e. the boundary layer covering the thallus surface of brown seaweeds. Fragments of the macroalga Fucus serratus bearing an epibiotic community composed of the calcifiers Spirorbis spirorbis (Annelida) and Electra pilosa (Bryozoa) and the non-calcifier Alcyonidium hirsutum (Bryozoa) were maintained for 30 days under three pCO2 conditions: natural 460±59 µatm, present-day upwelling1193±166 µatm and future upwelling 3150±446 µatm. Only the highest pCO2 caused a significant reduction of growth rates and settlement of S. spirorbis individuals. Additionally, S. spirorbis settled juveniles exhibited enhanced calcification of 40% during daylight hours compared to dark hours, possibly reflecting a day-night alternation of an acidification-modulating effect by algal photosynthesis as opposed to an acidification-enhancing effect of algal respiration. E. pilosa colonies showed significantly increased growth rates at intermediate pCO2 (1193 µatm) but no response to higher pCO2. No effect of acidification on A. hirsutum colonies growth rates was observed. The results suggest a remarkable resistance of the algal macro-epibionts to levels of acidification occurring at present day upwellings in the Baltic. Only extreme future upwelling conditions impacted the tubeworm S. spirorbis, but not the bryozoans
Marine Invasion in the Mediterranean Sea: The Role of Abiotic Factors When There Is No Biological Resistance
The tropical red alga Womersleyella setacea (Rhodomelaceae, Rhodophyta) is causing increasing concern in the Mediterranean Sea because of its invasive behavior. After its introduction it has colonized most Mediterranean areas, but the mechanism underlying its acclimatization and invasion process remains unknown. To understand this process, we decided i) to assess in situ the seasonal biomass and phenological patterns of populations inhabiting the Mediterranean Sea in relation to the main environmental factors, and ii) to experimentally determine if the tolerance of W. setacea to different light and temperature conditions can explain its colonization success, as well as its bathymetric distribution range. The bathymetric distribution, biomass, and phenology of W. setacea were studied at two localities, and related to irradiance and temperature values recorded in situ. Laboratory experiments were set up to study survival, growth and reproduction under contrasting light and temperature conditions in the short, mid, and long term.Results showed that, in the studied area, the bathymetric distribution of W. setacea is restricted to a depth belt between 25 and 40 m deep, reaching maximum biomass values (126 g dw m−2) at 30 m depth. In concordance, although in the short term W. setacea survived and grew in a large range of environmental conditions, its life requirements for the mid and long term were dim light levels and low temperatures. Biomass of Womersleyella setacea did not show any clear seasonal pattern, though minimum values were reported in spring. Reproductive structures were always absent. Bearing in mind that no herbivores feed on Womersleyella setacea and that its thermal preferences are more characteristic of temperate than of tropical seaweeds, low light (50 µmol photon m−2 s−1) and low temperature (12°C) levels are critical for W. setacea survival and growth, thus probably determining its spread and bathymetric distribution across the Mediterranean Sea
- …
