411 research outputs found
Twin inequality for fully contextual quantum correlations
Quantum mechanics exhibits a very peculiar form of contextuality. Identifying
and connecting the simplest scenarios in which more general theories can or
cannot be more contextual than quantum mechanics is a fundamental step in the
quest for the principle that singles out quantum contextuality. The former
scenario corresponds to the Klyachko-Can-Binicioglu-Shumovsky (KCBS)
inequality. Here we show that there is a simple tight inequality, twin to the
KCBS, for which quantum contextuality cannot be outperformed. In a sense, this
twin inequality is the simplest tool for recognizing fully contextual quantum
correlations.Comment: REVTeX4, 4 pages, 1 figur
The fractional chromatic number of triangle-free subcubic graphs
Heckman and Thomas conjectured that the fractional chromatic number of any
triangle-free subcubic graph is at most 14/5. Improving on estimates of Hatami
and Zhu and of Lu and Peng, we prove that the fractional chromatic number of
any triangle-free subcubic graph is at most 32/11 (which is roughly 2.909)
Extensions of Fractional Precolorings show Discontinuous Behavior
We study the following problem: given a real number k and integer d, what is
the smallest epsilon such that any fractional (k+epsilon)-precoloring of
vertices at pairwise distances at least d of a fractionally k-colorable graph
can be extended to a fractional (k+epsilon)-coloring of the whole graph? The
exact values of epsilon were known for k=2 and k\ge3 and any d. We determine
the exact values of epsilon for k \in (2,3) if d=4, and k \in [2.5,3) if d=6,
and give upper bounds for k \in (2,3) if d=5,7, and k \in (2,2.5) if d=6.
Surprisingly, epsilon viewed as a function of k is discontinuous for all those
values of d
Relations between the local chromatic number and its directed version
The local chromatic number is a coloring parameter defined as the minimum number of colors that should appear in the most colorful closed neighborhood of a vertex under any proper coloring of the graph. Its directed version is the same when we consider only outneighborhoods in a directed graph. For digraphs with all arcs being present in both directions the two values are obviously equal. Here, we consider oriented graphs. We show the existence of a graph where the directed local chromatic number of all oriented versions of the graph is strictly less than the local chromatic number of the underlying undirected graph. We show that for fractional versions the analogous problem has a different answer: there always exists an orientation for which the directed and undirected values coincide. We also determine the supremum of the possible ratios of these fractional parameters, which turns out to be e, the basis of the natural logarithm
On local structures of cubicity 2 graphs
A 2-stab unit interval graph (2SUIG) is an axes-parallel unit square
intersection graph where the unit squares intersect either of the two fixed
lines parallel to the -axis, distance ()
apart. This family of graphs allow us to study local structures of unit square
intersection graphs, that is, graphs with cubicity 2. The complexity of
determining whether a tree has cubicity 2 is unknown while the graph
recognition problem for unit square intersection graph is known to be NP-hard.
We present a polynomial time algorithm for recognizing trees that admit a 2SUIG
representation
Fast computation of permanents over via arithmetic
We present a method of representing an element of as an
element of which in practice will be a
pair of unsigned integers. We show how to do addition, subtraction and
pointwise multiplication and division of such vectors quickly using primitive
binary operations (and, or, xor). We use this machinery to develop a fast
algorithm for computing the permanent of a matrix in . We present Julia code for a natural implementation of the permanent and
show that our improved implementation gives, roughly, a factor of 80 speedup
for problems of practical size. Using this improved code, we perform Monte
Carlo simulations that suggest that the distribution of \mbox{perm}(A) tends
to the uniform distribution as .Comment: 11 pages, 1 figur
Proving Norine's Conjecture holds for via SAT solvers
We say a red/blue edge-coloring of the -dimensional cube graph, , is
antipodal if all pairs of antipodal edges have different colors. Norine
conjectured that in such a coloring there must exist a pair of antipodal
vertices connected by a monochromatic path. Previous work has proven this
conjecture for . Using SAT solvers we verify that the conjecture holds
for .Comment: page
- …
