4,335 research outputs found
A unified framework for Schelling's model of segregation
Schelling's model of segregation is one of the first and most influential
models in the field of social simulation. There are many variations of the
model which have been proposed and simulated over the last forty years, though
the present state of the literature on the subject is somewhat fragmented and
lacking comprehensive analytical treatments. In this article a unified
mathematical framework for Schelling's model and its many variants is
developed. This methodology is useful in two regards: firstly, it provides a
tool with which to understand the differences observed between models;
secondly, phenomena which appear in several model variations may be understood
in more depth through analytic studies of simpler versions.Comment: 21 pages, 3 figure
Clinical manifestations of human brucellosis : a systematic review and meta-analysis
BACKGROUND: The objectives of this systematic review, commissioned by WHO, were to assess the frequency and severity of clinical manifestations of human brucellosis, in view of specifying a disability weight for a DALY calculation. METHODS/PRINCIPAL FINDINGS: Thirty three databases were searched, with 2,385 articles published between January 1990-June 2010 identified as relating to human brucellosis. Fifty-seven studies were of sufficient quality for data extraction. Pooled proportions of cases with specific clinical manifestations were stratified by age category and sex and analysed using generalized linear mixed models. Data relating to duration of illness and risk factors were also extracted. Severe complications of brucellosis infection were not rare, with 1 case of endocarditis and 4 neurological cases per 100 patients. One in 10 men suffered from epididymo-orchitis. Debilitating conditions such as arthralgia, myalgia and back pain affected around half of the patients (65%, 47% and 45%, respectively). Given that 78% patients had fever, brucellosis poses a diagnostic challenge in malaria-endemic areas. Significant delays in appropriate diagnosis and treatment were the result of health service inadequacies and socioeconomic factors. Based on disability weights from the 2004 Global Burden of Disease Study, a disability weight of 0.150 is proposed as the first informed estimate for chronic, localised brucellosis and 0.190 for acute brucellosis. CONCLUSIONS: This systematic review adds to the understanding of the global burden of brucellosis, one of the most common zoonoses worldwide. The severe, debilitating, and chronic impact of brucellosis is highlighted. Well designed epidemiological studies from regions lacking in data would allow a more complete understanding of the clinical manifestations of disease and exposure risks, and provide further evidence for policy-makers. As this is the first informed estimate of a disability weight for brucellosis, there need for further debate amongst brucellosis experts and a consensus to be reache
Towards More Accurate Molecular Dynamics Calculation of Thermal Conductivity. Case Study: GaN Bulk Crystals
Significant differences exist among literature for thermal conductivity of
various systems computed using molecular dynamics simulation. In some cases,
unphysical results, for example, negative thermal conductivity, have been
found. Using GaN as an example case and the direct non-equilibrium method,
extensive molecular dynamics simulations and Monte Carlo analysis of the
results have been carried out to quantify the uncertainty level of the
molecular dynamics methods and to identify the conditions that can yield
sufficiently accurate calculations of thermal conductivity. We found that the
errors of the calculations are mainly due to the statistical thermal
fluctuations. Extrapolating results to the limit of an infinite-size system
tend to magnify the errors and occasionally lead to unphysical results. The
error in bulk estimates can be reduced by performing longer time averages using
properly selected systems over a range of sample lengths. If the errors in the
conductivity estimates associated with each of the sample lengths are kept
below a certain threshold, the likelihood of obtaining unphysical bulk values
becomes insignificant. Using a Monte-Carlo approach developed here, we have
determined the probability distributions for the bulk thermal conductivities
obtained using the direct method. We also have observed a nonlinear effect that
can become a source of significant errors. For the extremely accurate results
presented here, we predict a [0001] GaN thermal conductivity of 185 at 300 K, 102 at 500 K, and 74
at 800 K. Using the insights obtained in the work, we have achieved a
corresponding error level (standard deviation) for the bulk (infinite sample
length) GaN thermal conductivity of less than 10 , 5 , and 15 at 300 K, 500 K, and 800 K respectively
Similarity based cooperation and spatial segregation
We analyze a cooperative game, where the cooperative act is not based on the
previous behaviour of the co-player, but on the similarity between the players.
This system has been studied in a mean-field description recently [A. Traulsen
and H. G. Schuster, Phys. Rev. E 68, 046129 (2003)]. Here, the spatial
extension to a two-dimensional lattice is studied, where each player interacts
with eight players in a Moore neighborhood. The system shows a strong
segregation independent on parameters. The introduction of a local conversion
mechanism towards tolerance allows for four-state cycles and the emergence of
spiral waves in the spatial game. In the case of asymmetric costs of
cooperation a rich variety of complex behavior is observed depending on both
cooperation costs. Finally, we study the stabilization of a cooperative fixed
point of a forecast rule in the symmetric game, which corresponds to
cooperation across segregation borders. This fixed point becomes unstable for
high cooperation costs, but can be stabilized by a linear feedback mechanism.Comment: 7 pages, 9 figure
Effective Free Energy for Individual Dynamics
Physics and economics are two disciplines that share the common challenge of
linking microscopic and macroscopic behaviors. However, while physics is based
on collective dynamics, economics is based on individual choices. This
conceptual difference is one of the main obstacles one has to overcome in order
to characterize analytically economic models. In this paper, we build both on
statistical mechanics and the game theory notion of Potential Function to
introduce a rigorous generalization of the physicist's free energy, which
includes individual dynamics. Our approach paves the way to analytical
treatments of a wide range of socio-economic models and might bring new
insights into them. As first examples, we derive solutions for a congestion
model and a residential segregation model.Comment: 8 pages, 2 figures, presented at the ECCS'10 conferenc
On Spatial Consensus Formation: Is the Sznajd Model Different from a Voter Model?
In this paper, we investigate the so-called ``Sznajd Model'' (SM) in one
dimension, which is a simple cellular automata approach to consensus formation
among two opposite opinions (described by spin up or down). To elucidate the SM
dynamics, we first provide results of computer simulations for the
spatio-temporal evolution of the opinion distribution , the evolution of
magnetization , the distribution of decision times and
relaxation times . In the main part of the paper, it is shown that the
SM can be completely reformulated in terms of a linear VM, where the transition
rates towards a given opinion are directly proportional to frequency of the
respective opinion of the second-nearest neighbors (no matter what the nearest
neighbors are). So, the SM dynamics can be reduced to one rule, ``Just follow
your second-nearest neighbor''. The equivalence is demonstrated by extensive
computer simulations that show the same behavior between SM and VM in terms of
, , , , and the final attractor statistics. The
reformulation of the SM in terms of a VM involves a new parameter , to
bias between anti- and ferromagnetic decisions in the case of frustration. We
show that plays a crucial role in explaining the phase transition
observed in SM. We further explore the role of synchronous versus asynchronous
update rules on the intermediate dynamics and the final attractors. Compared to
the original SM, we find three additional attractors, two of them related to an
asymmetric coexistence between the opposite opinions.Comment: 22 pages, 20 figures. For related publications see
http://www.ais.fraunhofer.de/~fran
Nonequilibrium phase transition in the coevolution of networks and opinions
Models of the convergence of opinion in social systems have been the subject
of a considerable amount of recent attention in the physics literature. These
models divide into two classes, those in which individuals form their beliefs
based on the opinions of their neighbors in a social network of personal
acquaintances, and those in which, conversely, network connections form between
individuals of similar beliefs. While both of these processes can give rise to
realistic levels of agreement between acquaintances, practical experience
suggests that opinion formation in the real world is not a result of one
process or the other, but a combination of the two. Here we present a simple
model of this combination, with a single parameter controlling the balance of
the two processes. We find that the model undergoes a continuous phase
transition as this parameter is varied, from a regime in which opinions are
arbitrarily diverse to one in which most individuals hold the same opinion. We
characterize the static and dynamical properties of this transition
- …
