33 research outputs found
Tidal and sub-tidal sea level variability at the northern shelf of the Brazilian Northeast Region
ABSTRACT A characterization of the sea level variability at tidal and sub-tidal frequencies at the northern shore of the Brazilian Northeast shelf for the period 2009-2011 is presented. The sea level data used was obtained from the Permanent Geodetic Tide Network from the Brazilian Institute of Geography and Statistics for the Fortaleza gauge station. Local wind data was also used to assess its effects on the low-frequency sea level variability. The variability of the sea level was investigated by classical harmonic analysis and by morphology assessment over the tidal signal. The low frequencies were obtained by low-pass filtering. The tidal range oscillated with the highest value of 3.3 m during the equinox and the lowest value of 0.7 m during the solstice. Differences between the spring and neap tides were as high as 1 m. A total of 59 tidal constituents were obtained from harmonic analysis, and the regional tide was classified as semi-diurnal pure with a form number of 0.11. An assessment of the monthly variability of the main tidal constituents (M2, S2, N2, O1, and K1) indicated that the main semi-diurnal solar S2 presented the highest variability, ranging from 0.21 to 0.41 m; it was the main element altering the form number through the years. The low frequency sea-level variability is negligible, although there is a persistent signal with an energy peak in the 10-15 day period, and it cannot be explained by the effects of local winds
Mollusc assemblage in an urban bay nearby a marine extractive reserve, Florianópolis - SC, Brazil
dTip60 HAT Activity Controls Synaptic Bouton Expansion at the Drosophila Neuromuscular Junction
Background: Histone acetylation of chromatin plays a key role in promoting the dynamic transcriptional responses in neurons that influence the neuroplasticity linked to cognitive ability, yet the specific histone acetyltransferases (HATs) that create such epigenetic marks remain to be elucidated. Methods and Findings: Here we use the Drosophila neuromuscular junction (NMJ) as a well-characterized synapse model to identify HATs that control synaptic remodeling and structure. We show that the HAT dTip60 is concentrated both pre and post-synaptically within the NMJ. Presynaptic targeted reduction of dTip60 HAT activity causes a significant increase in synaptic bouton number that specifically affects type Is boutons. The excess boutons show a suppression of the active zone synaptic function marker bruchpilot, suggesting defects in neurotransmission function. Analysis of microtubule organization within these excess boutons using immunohistochemical staining to the microtubule associated protein futsch reveals a significant increase in the rearrangement of microtubule loop architecture that is required for bouton division. Moreover, a-tubulin acetylation levels of microtubules specifically extending into the terminal synaptic boutons are reduced in response to dTip60 HAT reduction. Conclusions: Our results are the first to demonstrate a causative role for the HAT dTip60 in the control of synaptic plasticity that is achieved, at least in part, via regulation of the synaptic microtubule cytoskeleton. These findings have implication
Automatic target recognition based on cross-plot
Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository.Kelvin Kian Loong Wong and Derek Abbot
Intracaval and intracardiac extension of Wilms' tumor: the influence of preoperative chemotherapy on surgical morbidity
Computer vision for ocean observing
There have been increased developments in ocean exploration using autonomous underwater vehicles (AUVs) and unmanned underwater vehicles (UUVs). However, the contrast of underwater images is still a major issue for application. It is difficult to acquire clear underwater images around underwater vehicles. Since the 1960s, sonar sensors have been extensively used to detect and recognize objects in oceans. Due to the principles of acoustic imaging, sonar-imaged images have many shortcomings, such as a low signal to noise ratio and a low resolution. Consequently, vision sensors must be used for short-range identification because sonars yield to low-quality images. This thesis will concentrate solely on the optical imaging sensors for ocean observing. Although the underwater optical imaging technology makes a great progress, the recognition of underwater objects also remains a major issue in recent days. Different from the common images, underwater images suffer from poor visibility due to the medium scattering and light distortion. First of all, capturing images underwater are difficult, mostly due to attenuation caused by light. The random attenuation of the light mainly causes the haze appearance along with the part of the light scattered back from the water. In particular, the objects at a distance of more than 10 m are almost indistinguishable because of absorption. Furthermore, when the artificial light is employed, it can cause a distinctive footprint on the seafloor. In this paper, we will analysis the recent trends of ocean exploration approaches
From a water resource to a point pollution source: the daily journey of a coastal urban stream
The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures
