24 research outputs found
The RICORDO approach to semantic interoperability for biomedical data and models: strategy, standards and solutions.
BACKGROUND: The practice and research of medicine generates considerable quantities of data and model resources (DMRs). Although in principle biomedical resources are re-usable, in practice few can currently be shared. In particular, the clinical communities in physiology and pharmacology research, as well as medical education, (i.e. PPME communities) are facing considerable operational and technical obstacles in sharing data and models. FINDINGS: We outline the efforts of the PPME communities to achieve automated semantic interoperability for clinical resource documentation in collaboration with the RICORDO project. Current community practices in resource documentation and knowledge management are overviewed. Furthermore, requirements and improvements sought by the PPME communities to current documentation practices are discussed. The RICORDO plan and effort in creating a representational framework and associated open software toolkit for the automated management of PPME metadata resources is also described. CONCLUSIONS: RICORDO is providing the PPME community with tools to effect, share and reason over clinical resource annotations. This work is contributing to the semantic interoperability of DMRs through ontology-based annotation by (i) supporting more effective navigation and re-use of clinical DMRs, as well as (ii) sustaining interoperability operations based on the criterion of biological similarity. Operations facilitated by RICORDO will range from automated dataset matching to model merging and managing complex simulation workflows. In effect, RICORDO is contributing to community standards for resource sharing and interoperability.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Computed tomography and magnetic resonance imaging of multiple focal nodular hyperplasias of the liver with congenital absence of the portal vein in a Chinese girl: case report and review of the literature
Recommended from our members
Hierarchical Correlation Clustering in Multiple 2D Scalar Fields
Sets of multiple scalar fields can be used to model many types of variation in data, such as uncertainty in measurements and simulations or time-dependent behavior of scalar quantities. Many structural properties of such fields can be explained by dependencies between different points in the scalar field. Although these dependencies can be of arbitrary complexity, correlation, i.e., the linear dependency, already provides significant structural information. Existing methods for correlation analysis are usually limited to positive correlation, handle only local dependencies, or use combinatorial approximations to this continuous problem. We present a new approach for computing and visualizing correlated regions in sets of 2-dimensional scalar fields. This paper describes the following three main contributions: (i) An algorithm for hierarchical correlation clustering resulting in a dendrogram, (ii) a generalization of topological landscapes for dendrogram visualization, and (iii) a new method for incorporating negative correlation values in the clustering and visualization. All steps are designed to preserve the special properties of correlation coefficients. The results are visualized in two linked views, one showing the cluster hierarchy as 2D landscape and the other providing a spatial context in the scalar field's domain. Different coloring and texturing schemes coupled with interactive selection support an exploratory data analysis
Parallel cell projection rendering of adaptive mesh refinement data
Adaptive mesh refinement (AMR) is a technique used in numerical simulations to automatically refine (or de-refine) certain regions of the physical domain in a finite difference calculation. AMR data consists of nested hierarchies of data grids. As AMR visualization is still a relatively unexplored topic, our work is motivated by the need to perform efficient visualization of large AMR data sets. We present a software algorithm for parallel direct volume rendering of AMR data using a cell-projection technique on several different parallel platforms. Our algorithm can use one of several different distribution methods, and we present performance results for each of these alternative approaches. By partitioning an AMR data set into blocks of constant resolution and estimating rendering costs of individual blocks using an application specific benchmark, it is possible to achieve even load balancing
