123 research outputs found

    Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: Environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    Get PDF
    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 ??C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.ope

    Rare Earth-Aluminum Oxide Glasses for Optical Applications

    Get PDF
    Glasses based on rare earth oxides and aluminum oxide with 0-20 mol% SiO2 provide a combination of optical properties, mechanical and chemical stability, and process characteristics not available in other oxide materials. Properties of the glasses include: refractive index 1.7-1.8, low dispersion (Abbe number ∼40), high solubility of optically active dopants, homogeneous chemical composition, long fluorescence lifetimes at dopant concentrations up to 5 mol%, broad fluorescence bandwidth, and infra-red transmission to ≈5000nm. the glasses are hard, strong and resist chemical attack and they can be cast in sections 5-10mm thick. This paper briefly describes glass processing and presents bulk glass properties including results of experiments to study infra-red fluorescence at wavelengths ∼1550, ∼2900 and ∼1030nm from Er- and Yb-doped glasses that were optically pumped at 980 nm. © 2004 Elsevier B.V. All rights reserved

    Carbon budgets of top- and subsoil food webs in an arable system

    Get PDF
    © 2018 This study assessed the carbon (C) budget and the C stocks in major compartments of the soil food web (bacteria, fungi, protists, nematodes, meso- and macrofauna) in an arable field with/without litter addition. The C stocks in the food web were more than three times higher in topsoil (0–10 cm) compared to subsoil (>40 cm). Microorganisms contained over 95% of food web C, with similar contributions of bacteria and fungi in topsoil. Litter addition did not alter C pools of soil biota after one growing season, except for the increase of fungi and fungal feeding nematodes in the topsoil. However, the C budget for functional groups changed with depth, particularly in the microfauna. This suggests food web resilience to litter amendment in terms of C pool sizes after one growing season. In contrast, the distinct depth dependent pattern indicates specific metacommunities, likely shaped by dominant abiotic and biotic habitat properties

    Clay content drives carbon stocks in soils under a plantation of Eucalyptus saligna Labill. in southern Brazil

    Get PDF
    Soil carbon accumulation is largely dependent on net primary productivity. To our knowledge, there have been no studies investigating the dynamics of carbon accumulation in weathered subtropical soils, especially in managed eucalyptus plantations. We quantified the seasonal input of leaf litter, the leaf decomposition rate and soil carbon stocks in an commercial plantation of Eucalyptus saligna Labill. in southern Brazil. Our goal was to evaluate, through multiple linear regression, the influence that certain chemical characteristics of litter, as well as chemical and physical characteristics of soil, have on carbon accumulation in soil organic matter fractions. Variables related to the chemical composition of litter were not associated with the soil carbon stock in the particulate and mineral fractions. However, certain soil characteristics were significantly associated with the carbon stock in both fractions. The concentrations of nutrients associated with plant growth and productivity, such as phosphorus, sulfur, copper and zinc, were associated with variations in the labile carbon pool (particulate fraction). Clay content was strongly associated with the carbon stock in the mineral fraction. The carbon accumulation and stabilization in weathered subtropical Ultisol seems to be mainly associated with the intrinsic characteristics of the soil, particularly clay content, rather than with the quantity, chemical composition or decomposition rate of the litter

    Single-Spin Addressing in an Atomic Mott Insulator

    Get PDF
    Ultracold atoms in optical lattices are a versatile tool to investigate fundamental properties of quantum many body systems. In particular, the high degree of control of experimental parameters has allowed the study of many interesting phenomena such as quantum phase transitions and quantum spin dynamics. Here we demonstrate how such control can be extended down to the most fundamental level of a single spin at a specific site of an optical lattice. Using a tightly focussed laser beam together with a microwave field, we were able to flip the spin of individual atoms in a Mott insulator with sub-diffraction-limited resolution, well below the lattice spacing. The Mott insulator provided us with a large two-dimensional array of perfectly arranged atoms, in which we created arbitrary spin patterns by sequentially addressing selected lattice sites after freezing out the atom distribution. We directly monitored the tunnelling quantum dynamics of single atoms in the lattice prepared along a single line and observed that our addressing scheme leaves the atoms in the motional ground state. Our results open the path to a wide range of novel applications from quantum dynamics of spin impurities, entropy transport, implementation of novel cooling schemes, and engineering of quantum many-body phases to quantum information processing.Comment: 8 pages, 5 figure

    PpiA, a Surface PPIase of the Cyclophilin Family in Lactococcus lactis

    Get PDF
    Background: Protein folding in the envelope is a crucial limiting step of protein export and secretion. In order to better understand this process in Lactococcus lactis, a lactic acid bacterium, genes encoding putative exported folding factors like Peptidyl Prolyl Isomerases (PPIases) were searched for in lactococcal genomes. Results: In L. lactis, a new putative membrane PPIase of the cyclophilin subfamily, PpiA, was identified and characterized. ppiA gene was found to be constitutively expressed under normal and stress (heat shock, H2O2) conditions. Under normal conditions, PpiA protein was synthesized and released from intact cells by an exogenously added protease, showing that it was exposed at the cell surface. No obvious phenotype could be associated to a ppiA mutant strain under several laboratory conditions including stress conditions, except a very low sensitivity to H2O2. Induction of a ppiA copy provided in trans had no effect i) on the thermosensitivity of an mutant strain deficient for the lactococcal surface protease HtrA and ii) on the secretion and stability on four exported proteins (a highly degraded hybrid protein and three heterologous secreted proteins) in an otherwise wild-type strain background. However, a recombinant soluble form of PpiA that had been produced and secreted in L. lactis and purified from a culture supernatant displayed both PPIase and chaperone activities. Conclusions: Although L. lactis PpiA, a protein produced and exposed at the cell surface under normal conditions, displaye

    Globally invariant metabolism but density-diversity mismatch in springtails

    Get PDF
    Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.fals

    Global fine-resolution data on springtail abundance and community structure

    Get PDF
    Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.fals

    Statistical biases due to anonymization evaluated in an open clinical dataset from COVID-19 patients

    Get PDF
    corecore