1,347 research outputs found

    Data-Oblivious Graph Algorithms in Outsourced External Memory

    Full text link
    Motivated by privacy preservation for outsourced data, data-oblivious external memory is a computational framework where a client performs computations on data stored at a semi-trusted server in a way that does not reveal her data to the server. This approach facilitates collaboration and reliability over traditional frameworks, and it provides privacy protection, even though the server has full access to the data and he can monitor how it is accessed by the client. The challenge is that even if data is encrypted, the server can learn information based on the client data access pattern; hence, access patterns must also be obfuscated. We investigate privacy-preserving algorithms for outsourced external memory that are based on the use of data-oblivious algorithms, that is, algorithms where each possible sequence of data accesses is independent of the data values. We give new efficient data-oblivious algorithms in the outsourced external memory model for a number of fundamental graph problems. Our results include new data-oblivious external-memory methods for constructing minimum spanning trees, performing various traversals on rooted trees, answering least common ancestor queries on trees, computing biconnected components, and forming open ear decompositions. None of our algorithms make use of constant-time random oracles.Comment: 20 page

    Rouse Chains with Excluded Volume Interactions: Linear Viscoelasticity

    Full text link
    Linear viscoelastic properties for a dilute polymer solution are predicted by modeling the solution as a suspension of non-interacting bead-spring chains. The present model, unlike the Rouse model, can describe the solution's rheological behavior even when the solvent quality is good, since excluded volume effects are explicitly taken into account through a narrow Gaussian repulsive potential between pairs of beads in a bead-spring chain. The use of the narrow Gaussian potential, which tends to the more commonly used delta-function repulsive potential in the limit of a width parameter "d" going to zero, enables the performance of Brownian dynamics simulations. The simulations results, which describe the exact behavior of the model, indicate that for chains of arbitrary but finite length, a delta-function potential leads to equilibrium and zero shear rate properties which are identical to the predictions of the Rouse model. On the other hand, a non-zero value of "d" gives rise to a prediction of swelling at equilibrium, and an increase in zero shear rate properties relative to their Rouse model values. The use of a delta-function potential appears to be justified in the limit of infinite chain length. The exact simulation results are compared with those obtained with an approximate solution which is based on the assumption that the non-equilibrium configurational distribution function is Gaussian. The Gaussian approximation is shown to be exact to first order in the strength of excluded volume interaction, and is found to be accurate above a threshold value of "d", for given values of chain length and strength of excluded volume interaction.Comment: Revised version. Long chain limit analysis has been deleted. An improved and corrected examination of the long chain limit will appear as a separate posting. 32 pages, 9 postscript figures, LaTe

    Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets

    Get PDF
    Face-to-face and edge-to-edge free energy interactions of Wyoming Na-montmorillonite platelets were studied by calculating potential of mean force along their center to center reaction coordinate using explicit solvent (i.e., water) molecular dynamics and free energy perturbation methods. Using a series of configurations, the Gay-Berne potential was parametrized and used to examine the meso-scale aggregation and properties of platelets that are initially random oriented under isothermal-isobaric conditions. Aggregates of clay were defined by geometrical analysis of face-to-face proximity of platelets with size distribution described by a log-normal function. The isotropy of the microstructure was assessed by computing a scalar order parameter. The number of platelets per aggregate and anisotropy of the microstructure both increases with platelet plan area. The system becomes more ordered and aggregate size increases with increasing pressure until maximum ordered state at confining pressure of 50 atm. Further increase of pressure slides platelets relative to each other leading to smaller aggregate size. The results show aggregate size of (3–8) platelets for sodium-smectite in agreement with experiments (3–10). The geometrical arrangement of aggregates affects mechanical properties of the system. The elastic properties of the meso-scale aggregate assembly are reported and compared with nanoindentation experiments. It is found that the elastic properties at this scale are close to the cubic systems. The elastic stiffness and anisotropy of the assembly increases with the size of the platelets and the level of external pressure.National Science Foundation (U.S.) (Extreme Science and Engineering Discovery Environment (XSEDE) and Texas Advanced Computing Center Grant TG-DMR100028)X-Shale Hub at MITSingapore-MIT Alliance for Research and Technolog

    Polymer transport in random flow

    Get PDF
    The dynamics of polymers in a random smooth flow is investigated in the framework of the Hookean dumbbell model. The analytical expression of the time-dependent probability density function of polymer elongation is derived explicitly for a Gaussian, rapidly changing flow. When polymers are in the coiled state the pdf reaches a stationary state characterized by power-law tails both for small and large arguments compared to the equilibrium length. The characteristic relaxation time is computed as a function of the Weissenberg number. In the stretched state the pdf is unstationary and exhibits multiscaling. Numerical simulations for the two-dimensional Navier-Stokes flow confirm the relevance of theoretical results obtained for the delta-correlated model.Comment: 28 pages, 6 figure

    Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags

    Full text link
    Using the ARGUS detector at the e+ee^+ e^- storage ring DORIS II, we have measured the Michel parameters ρ\rho, ξ\xi, and ξδ\xi\delta for τ±l±ννˉ\tau^{\pm}\to l^{\pm} \nu\bar\nu decays in τ\tau-pair events produced at center of mass energies in the region of the Υ\Upsilon resonances. Using τρν\tau^\mp \to \rho^\mp \nu as spin analyzing tags, we find ρe=0.68±0.04±0.08\rho_{e}=0.68\pm 0.04 \pm 0.08, ξe=1.12±0.20±0.09\xi_{e}= 1.12 \pm 0.20 \pm 0.09, ξδe=0.57±0.14±0.07\xi\delta_{e}= 0.57 \pm 0.14 \pm 0.07, ρμ=0.69±0.06±0.08\rho_{\mu}= 0.69 \pm 0.06 \pm 0.08, ξμ=1.25±0.27±0.14\xi_{\mu}= 1.25 \pm 0.27 \pm 0.14 and ξδμ=0.72±0.18±0.10\xi\delta_{\mu}= 0.72 \pm 0.18 \pm 0.10. In addition, we report the combined ARGUS results on ρ\rho, ξ\xi, and ξδ\xi\delta using this work und previous measurements.Comment: 10 pages, well formatted postscript can be found at http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p

    The statistics of natural hand movements.

    Get PDF
    Humans constantly use their hands to interact with the environment and they engage spontaneously in a wide variety of manual activities during everyday life. In contrast, laboratory-based studies of hand function have used a limited range of predefined tasks. The natural movements made by the hand during everyday life have thus received little attention. Here, we developed a portable recording device that can be worn by subjects to track movements of their right hand as they go about their daily routine outside of a laboratory setting. We analyse the kinematic data using various statistical methods. Principal component analysis of the joint angular velocities showed that the first two components were highly conserved across subjects, explained 60% of the variance and were qualitatively similar to those reported in previous studies of reach-to-grasp movements. To examine the independence of the digits, we developed a measure based on the degree to which the movements of each digit could be linearly predicted from the movements of the other four digits. Our independence measure was highly correlated with results from previous studies of the hand, including the estimated size of the digit representations in primary motor cortex and other laboratory measures of digit individuation. Specifically, the thumb was found to be the most independent of the digits and the index finger was the most independent of the fingers. These results support and extend laboratory-based studies of the human hand

    Cerebral activations related to ballistic, stepwise interrupted and gradually modulated movements in parkinson patients

    Get PDF
    Patients with Parkinson's disease (PD) experience impaired initiation and inhibition of movements such as difficulty to start/stop walking. At single-joint level this is accompanied by reduced inhibition of antagonist muscle activity. While normal basal ganglia (BG) contributions to motor control include selecting appropriate muscles by inhibiting others, it is unclear how PD-related changes in BG function cause impaired movement initiation and inhibition at single-joint level. To further elucidate these changes we studied 4 right-hand movement tasks with fMRI, by dissociating activations related to abrupt movement initiation, inhibition and gradual movement modulation. Initiation and inhibition were inferred from ballistic and stepwise interrupted movement, respectively, while smooth wrist circumduction enabled the assessment of gradually modulated movement. Task-related activations were compared between PD patients (N = 12) and healthy subjects (N = 18). In healthy subjects, movement initiation was characterized by antero-ventral striatum, substantia nigra (SN) and premotor activations while inhibition was dominated by subthalamic nucleus (STN) and pallidal activations, in line with the known role of these areas in simple movement. Gradual movement mainly involved antero-dorsal putamen and pallidum. Compared to healthy subjects, patients showed reduced striatal/SN and increased pallidal activation for initiation, whereas for inhibition STN activation was reduced and striatal-thalamo-cortical activation increased. For gradual movement patients showed reduced pallidal and increased thalamo-cortical activation. We conclude that PD-related changes during movement initiation fit the (rather static) model of alterations in direct and indirect BG pathways. Reduced STN activation and regional cortical increased activation in PD during inhibition and gradual movement modulation are better explained by a dynamic model that also takes into account enhanced responsiveness to external stimuli in this disease and the effects of hyper-fluctuating cortical inputs to the striatum and STN in particular

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers
    corecore