162 research outputs found
In silico labeling reveals the time-dependent label half-life and transit-time in dynamical systems
Background: Mathematical models of dynamical systems facilitate the computation of characteristic properties that are not accessible experimentally. In cell biology, two main properties of interest are (1) the time-period a protein is accessible to other molecules in a certain state - its half-life - and (2) the time it spends when passing through a subsystem - its transit-time. We discuss two approaches to quantify the half-life, present the novel method of in silico labeling, and introduce the label half-life and label transit-time. The developed method has been motivated by laboratory tracer experiments. To investigate the kinetic properties and behavior of a substance of interest, we computationally label this species in order to track it throughout its life cycle. The corresponding mathematical model is extended by an additional set of reactions for the labeled species, avoiding any double-counting within closed circuits, correcting for the influences of upstream fluxes, and taking into account combinatorial multiplicity for complexes or reactions with several reactants or products. A profile likelihood approach is used to estimate confidence intervals on the label half-life and transit-time. Results: Application to the JAK-STAT signaling pathway in Epo-stimulated BaF3-EpoR cells enabled the calculation of the time-dependent label half-life and transit-time of STAT species. The results were robust against parameter uncertainties. Conclusions: Our approach renders possible the estimation of species and label half-lives and transit-times. It is applicable to large non-linear systems and an implementation is provided within the PottersWheel modeling framework (http://www.potterswheel.de)
The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins
In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures
Predicting change in quality of life from age 79 to 90 in the Lothian Birth Cohort 1921
Purpose: Quality of life (QoL) decreases in very old age, and is strongly related to health outcomes and mortality. Understanding the predictors of QoL and change in QoL amongst the oldest old may suggest potential targets for intervention. This study investigated change in QoL from age 79 to 90 years in a group of older adults in Scotland, and identified potential predictors of that change.
Method: Participants were members of the Lothian Birth Cohort 1921 who attended clinic visits at age 79 (n = 554) and 90 (n = 129). Measures at both time points included QoL (WHOQOL-BREF: four domains and two single items), anxiety and depression, objective health, functional ability, self-rated health, loneliness, and personality.
Results: Mean QoL declined from age 79 to 90. Participants returning at 90 had scored significantly higher at 79 on most QoL measures, and exhibited better objective health and functional ability, and lower anxiety and depression than non-returners. Hierarchical multiple regression models accounted for 20.3–56.3% of the variance in QoL at age 90. Baseline QoL was the strongest predictor of domain scores (20.3–35.6% variance explained), suggesting that individual differences in QoL judgements remain largely stable. Additional predictors varied by the QoL domain and included self-rated health, loneliness, and functional and mood decline between age 79 and 90 years.
Conclusions: This study has identified potential targets for interventions to improve QoL in the oldest old. Further research should address causal pathways between QoL and functional and mood decline, perceived health and loneliness
Identification of membrane-type 1 matrix metalloproteinase tyrosine phosphorylation in association with neuroblastoma progression
<p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a pediatric tumor of neural crest cells that is clinically characterized by its variable evolution, from spontaneous regression to malignancy. Despite many advances in neuroblastoma research, 60% of neuroblastoma, which are essentially metastatic cases, are associated with poor clinical outcome due to the lack of effectiveness of current therapeutic strategies. Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), an enzyme involved in several steps in tumor progression, has previously been shown to be associated with poor clinical outcome for neuroblastoma. Based on our recent demonstration that MT1-MMP phosphorylation is involved in the growth of fibrosarcoma tumors, we examined the potential role of phosphorylated MT1-MMP in neuroblastoma progression.</p> <p>Methods</p> <p>Tyrosine phosphorylated MT1-MMP was immunostained on tissue microarray samples from 55 patients with neuroblastoma detected by mass screening (known to be predominantly associated with favourable outcome), and from 234 patients with standard diagnosed neuroblastoma. In addition, the effects of a non phosphorylable version of MT1-MMP on neuroblastoma cell migration and proliferation were investigated within three-dimensional collagen matrices.</p> <p>Results</p> <p>Although there is no correlation between the extent of tyrosine phosphorylation of MT1-MMP (pMT1-MMP) and MYCN amplification or clinical stage, we observed greater phosphorylation of pMT1-MMP in standard neuroblastoma, while it is less evident in neuroblastoma from mass screening samples (P = 0.0006) or in neuroblastoma samples from patients younger than one year (P = 0.0002). <it>In vitro </it>experiments showed that overexpression of a non-phosphorylable version of MT1-MMP reduced MT1-MMP-mediated neuroblastoma cell migration and proliferation within a three-dimensional type I collagen matrix, suggesting a role for the phosphorylated enzyme in the invasive properties of neuroblastoma cells.</p> <p>Conclusion</p> <p>Overall, these results suggest that tyrosine phosphorylated MT1-MMP plays an important role in neuroblastoma progression and that its expression is preferentially observed in tumor specimens from neuroblastoma patients showing poor clinical outcome.</p
HSPG-Deficient Zebrafish Uncovers Dental Aspect of Multiple Osteochondromas
Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2−/− fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2−/− fish. Histological analysis reveals that ext2−/− fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2−/− fish have a single tooth at the end of the 5th pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2−/− teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2+/− adults. The tooth morphology in ext2−/− was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems
Impact of Normothermic Preservation with Extracellular Type Solution Containing Trehalose on Rat Kidney Grafting from a Cardiac Death Donor
BACKGROUND: The aim of this study was to investigate factors that may improve the condition of a marginal kidney preserved with a normothermic solution following cardiac death (CD) in a model of rat kidney transplantation (RTx). METHODS: Post-euthanasia, Lewis (LEW) donor rats were left for 1 h in a 23°C room. These critical kidney grafts were preserved in University of Wisconsin (UW), lactate Ringer's (LR), or extracellular-trehalose-Kyoto (ETK) solution, followed by intracellular-trehalose-Kyoto (ITK) solution at 4, 23, or 37°C for another 1 h, and finally transplanted into bilaterally nephrectomized LEW recipient rats (n = 4-6). Grafts of rats surviving to day 14 after RTx were evaluated by histopathological examination. The energy activity of these marginal rat kidneys was measured by high-performance liquid chromatography (HPLC; n = 4 per group) and fluorescence intensity assay (n = 6 per group) after preservation with UW or ETK solutions at each temperature. Finally, the transplanted kidney was assessed by an in vivo luciferase imaging system (n = 2). RESULTS: Using the 1-h normothermic preservation of post-CD kidneys, five out of six recipients in the ETK group survived until 14 days, in contrast to zero out of six in the UW group (p<0.01). Preservation with ITK rather than ETK at 23°C tended to have an inferior effect on recipient survival (p = 0.12). Energy activities of the fresh donor kidneys decreased in a temperature-dependent manner, while those of post-CD kidneys remained at the lower level. ETK was superior to UW in protecting against edema of the post-CD kidneys at the higher temperature. Luminescence intensity of successful grafts recovered within 1 h, while the intensity of grafts of deceased recipients did not change at 1 h post-reperfusion. CONCLUSIONS: Normothermic storage with extracellular-type solution containing trehalose might prevent reperfusion injury due to temperature-dependent tissue edema
Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of 13C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-13C]-pyruvate affords ribonucleotides with site specific labeling at C5′ (~95%) and C1′ (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-13C]-glycerol for which the ribose ring is labeled in all but the C4′ carbon position, leading to multiplet splitting of the C1′, C2′ and C3′ carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides
The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing.
Microbial ecology is plagued by problems
of an abstract nature. Cell sizes are so
small and population sizes so large that
both are virtually incomprehensible. Niches
are so far from our everyday experience
as to make their very definition elusive.
Organisms that may be abundant and
critical to our survival are little understood,
seldom described and/or cultured,
and sometimes yet to be even seen. One
way to confront these problems is to use
data of an even more abstract nature:
molecular sequence data. Massive environmental
nucleic acid sequencing, such
as metagenomics or metatranscriptomics,
promises functional analysis of microbial
communities as a whole, without prior
knowledge of which organisms are in the
environment or exactly how they are
interacting. But sequence-based ecological
studies nearly always use a comparative
approach, and that requires relevant
reference sequences, which are an extremely
limited resource when it comes to
microbial eukaryotes.
In practice, this means sequence databases
need to be populated with enormous
quantities of data for which we have
some certainties about the source. Most
important is the taxonomic identity of
the organism from which a sequence is
derived and as much functional identification
of the encoded proteins as possible. In
an ideal world, such information would be
available as a large set of complete, well curated,
and annotated genomes for all the
major organisms from the environment
in question. Reality substantially diverges
from this ideal, but at least for bacterial
molecular ecology, there is a database
consisting of thousands of complete genomes
from a wide range of taxa,
supplemented by a phylogeny-driven approach
to diversifying genomics [2]. For
eukaryotes, the number of available genomes
is far, far fewer, and we have relied
much more heavily on random growth of
sequence databases, raising the
question as to whether this is fit for
purpose
Proteomic Analysis of Neisseria gonorrhoeae Biofilms Shows Shift to Anaerobic Respiration and Changes in Nutrient Transport and Outermembrane Proteins
Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC) to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with 13C6-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H) planktonic and light (L) biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not explicitly related to this shift may have other functions
Human Cytomegalovirus Induces TGF-β1 Activation in Renal Tubular Epithelial Cells after Epithelial-to-Mesenchymal Transition
Human cytomegalovirus (HCMV) infection is associated epidemiologically with poor outcome of renal allografts due to mechanisms which remain largely undefined. Transforming growth factor-β1 (TGF-β1), a potent fibrogenic cytokine, is more abundant in rejecting renal allografts that are infected with either HCMV or rat CMV as compared to uninfected, rejecting grafts. TGF-β1 induces renal fibrosis via epithelial-to-mesenchymal transition (EMT) of renal epithelial cells, a process by which epithelial cells acquire mesenchymal characteristics and a migratory phenotype, and secrete molecules associated with extracellular matrix deposition and remodeling. We report that human renal tubular epithelial cells infected in vitro with HCMV and exposed to TGF-β1 underwent morphologic and transcriptional changes of EMT, similar to uninfected cells. HCMV infected cells after EMT also activated extracellular latent TGF-β1 via induction of MMP-2. Renal epithelial cells transiently transfected with only the HCMV IE1 or IE2 open reading frames and stimulated to undergo EMT also induced TGF-β1 activation associated with MMP-2 production, suggesting a role for these viral gene products in MMP-2 production. Consistent with the function of these immediate early gene products, the antiviral agents ganciclovir and foscarnet did not inhibit TGF-β1 production after EMT by HCMV infected cells. These results indicate that HCMV infected renal tubular epithelial cells can undergo EMT after exposure to TGF-β1, similar to uninfected renal epithelial cells, but that HCMV infection by inducing active TGF-β1 may potentiate renal fibrosis. Our findings provide in vitro evidence for a pathogenic mechanism that could explain the clinical association between HCMV infection, TGF-β1, and adverse renal allograft outcome
- …
