237 research outputs found

    Non-hematopoietic cells contribute to protective tolerance to Aspergillus fumigatus via a TRIF pathway converging on IDO

    Get PDF
    Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Whereas the pivotal role of dendritic cells in determining the balance between immunopathology and protective immunity to the fungus is well established, we determined that epithelial cells (ECs) also contributes to this balance. Mechanistically, EC-mediated protection occurred through a Toll-like receptor 3/Toll/IL-1 receptor domain-containing adaptor-inducing interferon (TLR3/TRIF)-dependent pathway converging on indoleamine 2,3-dioxygenase (IDO) via non-canonical nuclear factor-?B activation. Consistent with the high susceptibility of TRIF-deficient mice to pulmonary aspergillosis, bone marrow chimeric mice with TRIF unresponsive ECs exhibited higher fungal burdens and inflammatory pathology than control mice, underexpressed the IDO-dependent T helper 1/regulatory T cell (Th1/Treg) pathway and overexpressed the Th17 pathway with massive neutrophilic inflammation in the lungs. Further studies with interferon (IFN)-?, IDO or IL-17R unresponsive cells confirmed the dependency of immune tolerance to the fungus on the IFN-?/IDO/Treg pathway and of immune resistance on the MyD88 pathway controlling the fungal growth. Thus, distinct immune pathways contribute to resistance and tolerance to the fungus, to which the hematopoietic/non-hematopoietic compartments contribute through distinct, yet complementary, roles.We thank Cristina Massi Benedetti for digital art and editing. This work was supported by the Specific Targeted Research Project 'Sybaris' (LSHE-CT-2006), contract number 037899 (FP7) and by the Italian Projects PRIN 2007KLCKP8_004 (to LR) and 2007XYB9T9_001 (to SB). CC and AC were financially supported by fellowships from Fundacao para a Ciencia e Tecnologia, Portugal (contracts SFRH/BD/65962/2009 and SFRH/BPD/46292/2008, respectively)

    Leukocyte trafficking in alveoli and airway passages

    Get PDF
    Many pulmonary diseases preferentially affect the large airways or the alveoli. Although the mechanisms are often particular to each disease process, site-specific differences in leukocyte trafficking and the regulation of inflammation also occur. Differences in the process of margination, sequestration, adhesion, and migration occur that can be attributed to differences in anatomy, hemodynamics, and the expression of proteins. The large airways are nourished by the bronchial circulation, whereas the pulmonary circulation feeds the distal lung parenchyma. The presence of different cell types in large airways from those in alveoli might contribute to site-specific differences in the molecular regulation of the inflammatory process

    Spontaneous Eosinophilic Nasal Inflammation in a Genetically-Mutant Mouse: Comparative Study with an Allergic Inflammation Model

    Get PDF
    Background: Eosinophilic inflammation is a hallmark of chronic rhinosinusitis with nasal polyps. To model this disease process experimentally, nasal sensitization of mice with ovalbumin or aspergillus has been described. Here, we describe a genetically mutant mouse that develops robust spontaneous nasal eosinophilic inflammation. These mice lack the enzyme SHP-1 that down-regulates the IL-4Ra/stat6 signaling pathway. We compared nasal inflammation and inflammatory mediators in SHP-1 deficient mice (mev) and an ovalbumin-induced nasal allergy model. Methods: A novel technique of trans-pharyngeal nasal lavage was developed to obtain samples of inflammatory cells from the nasal passages of allergic and mev mice. Total and differential cell counts were performed on cytospin preparations. Expression of tissue mRNA for IL-4, IL-13, and mouse beta-defensin-1 (MBD-1) was determined by quantitative PCR. Eotaxin in the lavage fluid was assessed by ELISA. Results: Allergic and mev mice had increased total cells and eosinophils compared with controls. Expression of IL-4 was similarly increased in both allergic and mev mice, but expression of IL-13 and eotaxin was significantly greater in the allergic mice than mev mice. Eotaxin was significantly up-regulated in both allergic rhinitis and mev mice. In both models of eosinophilic inflammation, down-regulation of the innate immune marker MBD-1 was observed. Conclusions: The mev mice display spontaneous chronic nasal eosinophilic inflammation with potential utility for chroni

    Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation

    Get PDF
    BACKGROUND: Fas receptor-mediated eosinophil apoptosis is currently forwarded as a mechanism resolving asthma-like inflammation. This view is based on observations in vitro and in airway lumen with unknown translatability to airway tissues in vivo. In fact, apoptotic eosinophils have not been detected in human diseased airway tissues whereas cytolytic eosinophils abound and constitute a major mode of degranulation of these cells. Also, Fas receptor stimulation may bypass the apoptotic pathway and directly evoke cytolysis of non-apoptotic cells. We thus hypothesized that effects of anti-Fas mAb in vivo may include both apoptosis and cytolysis of eosinophils and, hence, that established eosinophilic inflammation may not resolve by this treatment. METHODS: Weeklong daily allergen challenges of sensitized mice were followed by airway administration of anti-Fas mAb. BAL was performed and airway-pulmonary tissues were examined using light and electron microscopy. Lung tissue analysis for CC-chemokines, apoptosis, mucus production and plasma exudation (fibrinogen) were performed. RESULTS: Anti-Fas mAb evoked apoptosis of 28% and cytolysis of 4% of eosinophils present in allergen-challenged airway tissues. Furthermore, a majority of the apoptotic eosinophils remained unengulfed and eventually exhibited secondary necrosis. A striking histopathology far beyond the allergic inflammation developed and included degranulated eosinophils, neutrophilia, epithelial derangement, plasma exudation, mucus-plasma plugs, and inducement of 6 CC-chemokines. In animals without eosinophilia anti-Fas evoked no inflammatory response. CONCLUSION: An efficient inducer of eosinophil apoptosis in airway tissues in vivo, anti-Fas mAb evoked unprecedented asthma-like inflammation in mouse allergic airways. This outcome may partly reflect the ability of anti-Fas to evoke direct cytolysis of non-apoptotic eosinophils in airway tissues. Additionally, since most apoptotic tissue eosinophils progressed into the pro-inflammatory cellular fate of secondary necrosis this may also explain the aggravated inflammation. Our data indicate that Fas receptor mediated eosinophil apoptosis in airway tissues in vivo may cause severe disease exacerbation due to direct cytolysis and secondary necrosis of eosinophils

    Impairment of neutrophilic glucocorticoid receptor function in patients treated with steroids for septic shock

    Get PDF
    BACKGROUND: Glucocorticoid (GC) treatment has variable effect in sepsis. This may be explained by decreased expression or function of the glucocorticoid receptor (GR). The aim of this study was to determine GR expression and binding capacity in patients during and after sepsis. METHODS: In this prospective, non-interventional clinical study, peripheral blood and clinical data were collected from 20 adult patients at five timepoints during sepsis and 5–13 months after recovery. GR expression and binding capacity were assessed by flow cytometry. RESULTS: GR expression was higher in T lymphocytes from patients with septic shock compared to healthy subjects (p = 0.01). While there was no difference in GR expression between GC-treated and non-treated patients, GR binding capacity was lower in GC-treated patients at admission compared to healthy subjects (p ≤ 0.03). After the acute inflammation inflammatory phase, GR binding capacity was still lower in neutrophils of GC-treated patients, compared to healthy subjects (p = 0.01). On admission, GR binding capacity in T lymphocytes and neutrophils was inversely correlated with noradrenaline dose and lactate (p ≤ 0.03). CONCLUSIONS: Our data suggest that GR expression is increased in T lymphocytes during septic shock regardless of GC treatment, while GR binding capacity is decreased in neutrophils in GC-treated patients. As neutrophils are the predominant circulating leucocyte in septic shock, their decreased GR binding capacity may impede the response to exogenous or endogenous glucocorticoids

    Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis

    Get PDF
    Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75432/1/j.1365-2222.2006.02498.x.pd

    Fabrication Principles and Their Contribution to the Superior In Vivo Therapeutic Efficacy of Nano-Liposomes Remote Loaded with Glucocorticoids

    Get PDF
    We report here the design, development and performance of a novel formulation of liposome- encapsulated glucocorticoids (GCs). A highly efficient (>90%) and stable GC encapsulation was obtained based on a transmembrane calcium acetate gradient driving the active accumulation of an amphipathic weak acid GC pro-drug into the intraliposome aqueous compartment, where it forms a GC-calcium precipitate. We demonstrate fabrication principles that derive from the physicochemical properties of the GC and the liposomal lipids, which play a crucial role in GC release rate and kinetics. These principles allow fabrication of formulations that exhibit either a fast, second-order (t1/2 ∼1 h), or a slow, zero-order release rate (t1/2 ∼ 50 h) kinetics. A high therapeutic efficacy was found in murine models of experimental autoimmune encephalomyelitis (EAE) and hematological malignancies

    Influence of Short-Term Glucocorticoid Therapy on Regulatory T Cells In Vivo

    Get PDF
    Background: Pre- and early clinical studies on patients with autoimmune diseases suggested that induction of regulatory T(Treg) cells may contribute to the immunosuppressive effects of glucocorticoids(GCs). Objective: We readdressed the influence of GC therapy on Treg cells in immunocompetent human subjects and naı¨ve mice. Methods: Mice were treated with increasing doses of intravenous dexamethasone followed by oral taper, and Treg cells in spleen and blood were analyzed by FACS. Sixteen patients with sudden hearing loss but without an inflammatory disease received high-dose intravenous prednisolone followed by stepwise dose reduction to low oral prednisolone. Peripheral blood Treg cells were analyzed prior and after a 14 day GC therapy based on different markers. Results: Repeated GC administration to mice for three days dose-dependently decreased the absolute numbers of Treg cells in blood (100 mg dexamethasone/kg body weight: 2.861.86104 cells/ml vs. 336116104 in control mice) and spleen (dexamethasone: 2.861.96105/spleen vs. 956226105/spleen in control mice), which slowly recovered after 14 days taper in spleen but not in blood. The relative frequency of FOXP3+ Treg cells amongst the CD4+ T cells also decreased in a dose dependent manner with the effect being more pronounced in blood than in spleen. The suppressive capacity of Treg cells was unaltered by GC treatment in vitro. In immunocompetent humans, GCs induced mild T cell lymphocytosis. However, it did not change the relative frequency of circulating Treg cells in a relevant manner, although there was some variation depending on the definition of the Treg cells (FOXP3+: 4.061.5% vs 3.461.5%*; AITR+: 0.660.4 vs 0.560.3%, CD127low: 4.061.3 vs 5.063.0%* and CTLA4+: 13.8611.5 vs 15.6612.5%; * p,0.05). Conclusion: Short-term GC therapy does not induce the hitherto supposed increase in circulating Treg cell frequency, neither in immunocompetent humans nor in mice. Thus, it is questionable that the clinical efficacy of GCs is achieved by modulating Treg cell numbers
    corecore