3,617 research outputs found
Metallopanstimulin as a marker for head and neck cancer
BACKGROUND: Metallopanstimulin (MPS-1) is a ribosomal protein that is found in elevated amounts in the sera of patients with head and neck squamous cell carcinoma (HNSCC). We used a test, denoted MPS-H, which detects MPS-1 and MPS-1-like proteins, to determine the relationship between MPS-H serum levels and clinical status of patients with, or at risk for, HNSCC. PATIENTS AND METHODS: A total of 125 patients were prospectively enrolled from a university head and neck oncology clinic. Participants included only newly diagnosed HNSCC patients. Two control groups, including 25 non-smokers and 64 smokers, were studied for comparison. A total of 821 serum samples collected over a twenty-four month period were analyzed by the MPS-H radioimmunoassay. RESULTS: HNSCC, non-smokers, and smokers had average MPS-H values of 41.5 ng/mL, 10.2 ng/mL, and 12.8 ng/mL, respectively (p = 0.0001). CONCLUSION: We conclude that MPS-1 and MPS-1-like proteins are elevated in patients with HNSCC, and that MPS-H appears to be a promising marker of presence of disease and response to treatment in HNSCC patients
The generalised NMSSM at one loop: fine tuning and phenomenology
We determine the degree of fine tuning needed in a generalised version of the
NMSSM that follows from an underlying Z4 or Z8 R symmetry. We find that it is
significantly less than is found in the MSSM or NMSSM and extends the range of
Higgs mass that have acceptable fine tuning up to Higgs masses of mh ~ 130 GeV.
For universal boundary conditions analogous to the CMSSM the phenomenology is
rather MSSM like with the singlet states typically rather heavy. For more
general boundary conditions the singlet states can be light, leading to
interesting signatures at the LHC and direct detection experiments.Comment: 20 pages, 9 figures, matches published versio
MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings
Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up
The luminosity function of field galaxies
Schmidt's method for construction of luminosity function of galaxies is
generalized by taking into account the dependence of density of galaxies from
the distance in the near Universe. The logarithmical luminosity function (LLF)
of field galaxies depending on morphological type is constructed. We show that
the LLF for all galaxies, and also separately for elliptical and lenticular
galaxies can be presented by Schechter function in narrow area of absolute
magnitudes. The LLF of spiral galaxies was presented by Schechter function for
enough wide area of absolute magnitudes: . Spiral galaxies differ slightly by
parameter . At transition from early spirals to the late spirals parameter in
Schechter function is reduced. The reduction of mean luminosity of galaxies is
observed at transition from elliptical galaxies to lenticular galaxies, to
early spiral galaxies, and further, to late spiral galaxies, in a bright end, .
The completeness and the average density of samples of galaxies of different
morphological types are estimated. In the range the mean number density of all
galaxies is equal 0.127 Mpc-3.Comment: 14 page, 8 figures, to appear in Astrophysic
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Microservice Transition and its Granularity Problem: A Systematic Mapping Study
Microservices have gained wide recognition and acceptance in software
industries as an emerging architectural style for autonomic, scalable, and more
reliable computing. The transition to microservices has been highly motivated
by the need for better alignment of technical design decisions with improving
value potentials of architectures. Despite microservices' popularity, research
still lacks disciplined understanding of transition and consensus on the
principles and activities underlying "micro-ing" architectures. In this paper,
we report on a systematic mapping study that consolidates various views,
approaches and activities that commonly assist in the transition to
microservices. The study aims to provide a better understanding of the
transition; it also contributes a working definition of the transition and
technical activities underlying it. We term the transition and technical
activities leading to microservice architectures as microservitization. We then
shed light on a fundamental problem of microservitization: microservice
granularity and reasoning about its adaptation as first-class entities. This
study reviews state-of-the-art and -practice related to reasoning about
microservice granularity; it reviews modelling approaches, aspects considered,
guidelines and processes used to reason about microservice granularity. This
study identifies opportunities for future research and development related to
reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table
Missed Nursing Care Reported by Medical-Surgical RNs in a Community Hospital
Background: Missed nursing care is defined as any lapse in essential patient care. It is a previously studied, persistent phenomenon. If unrecognized, it can compromise patients’ recoveries, trigger adverse events, and increase healthcare costs.
Objectives: To examine the prevalence of missed nursing care reported by medical-surgical registered nurses (RNs) and contributing factors for its occurrence.
Methods: The project used a cross-sectional, correlational design. A convenience sample of 96 RNs, recruited from three medical-surgical units, completed the MISSCARE Survey between September and October 2017. An analysis of survey responses quantified the frequency, nature, and common contributing factors for care omissions. The project was set in a small, Northeast, Pathway to Excellence® designated hospital.
Results: Fifty-two RNs completed surveys, most who were female (94.2%), held a Bachelor’s in Nursing degree (53.8%), and had 10+ years of work experience (34.6%). Over 1 in 5 respondents reported five nursing tasks were “frequently” or “always” missed: care conferences (46.1%), scheduled ambulation (36.5%), turning (34.6%), monitoring intake and output (23.1%), and timely medications administration (23.1%). Significant contributors to care omissions were: heavy admission/discharge activity (57.7%), fewer assistive personnel (55.8%), staff shortages (50.0%), and unbalanced patient assignments (40.4%).
Conclusions: RNs identified the top five missed nursing care items in a small, community hospital and cited patient turnover, labor resource shortages, and unbalanced assignments as key, contributing factors. Inter-professional communication and teamwork effectiveness were not reported as contributing factors. Project results should inform nurse leaders’ efforts to devise interventions to safeguard patients, improve quality, and decrease cost
Multiplicity Distributions and Charged-neutral Fluctuations
Results from the multiplicity distributions of inclusive photons and charged
particles, scaling of particle multiplicities, event-by-event multiplicity
fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb
collisions are presented and discussed. A scaling of charged particle
multiplicity as and photons as have been observed, indicating violation of naive wounded nucleon model.
The analysis of localized charged-neutral fluctuation indicates a
model-independent demonstration of non-statistical fluctuations in both charged
particles and photons in limited azimuthal regions. However, no correlated
charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics
(ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in
Pramana, Journal of Physic
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
Both Grand Unified symmetries and discrete flavour symmetries are appealing
ways to describe apparent structures in the gauge and flavour sectors of the
Standard Model. Both symmetries put constraints on the high energy behaviour of
the theory. This can give rise to unexpected interplay when building models
that possess both symmetries. We investigate on the possibility to combine a
Pati-Salam model with the discrete flavour symmetry that gives rise to
quark-lepton complementarity. Under appropriate assumptions at the GUT scale,
the model reproduces fermion masses and mixings both in the quark and in the
lepton sectors. We show that in particular the Higgs sector and the running
Yukawa couplings are strongly affected by the combined constraints of the Grand
Unified and family symmetries. This in turn reduces the phenomenologically
viable parameter space, with high energy mass scales confined to a small region
and some parameters in the neutrino sector slightly unnatural. In the allowed
regions, we can reproduce the quark masses and the CKM matrix. In the lepton
sector, we reproduce the charged lepton masses, including bottom-tau
unification and the Georgi-Jarlskog relation as well as the two known angles of
the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse
hierarchy, and only allowing the neutrino parameters to spread into a range of
values between and , with .
Finally, our model suggests that the reactor mixing angle is close to its
current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for
publication in JHE
Scaling properties of protein family phylogenies
One of the classical questions in evolutionary biology is how evolutionary
processes are coupled at the gene and species level. With this motivation, we
compare the topological properties (mainly the depth scaling, as a
characterization of balance) of a large set of protein phylogenies with a set
of species phylogenies. The comparative analysis shows that both sets of
phylogenies share remarkably similar scaling behavior, suggesting the
universality of branching rules and of the evolutionary processes that drive
biological diversification from gene to species level. In order to explain such
generality, we propose a simple model which allows us to estimate the
proportion of evolvability/robustness needed to approximate the scaling
behavior observed in the phylogenies, highlighting the relevance of the
robustness of a biological system (species or protein) in the scaling
properties of the phylogenetic trees. Thus, the rules that govern the
incapability of a biological system to diversify are equally relevant both at
the gene and at the species level.Comment: Replaced with final published versio
- …
