36,367 research outputs found

    Does the butterfly diagram indicate asolar flux-transport dynamo?

    Full text link
    We address the question whether the properties of the observed latitude-time diagram of sunspot occurence (the butterfly diagram) provide evidence for the operation of a flux-transport dynamo, which explains the migration of the sunspot zones and the period of the solar cycle in terms of a deep equatorward meridional flow. We show that the properties of the butterfly diagram are equally well reproduced by a conventional dynamo model with migrating dynamo waves, but without transport of magnetic flux by a flow. These properties seem to be generic for an oscillatory and migratory field of dipole parity and thus do not permit an observational distinction between different dynamo approaches.Comment: 4 pages, 1 figur

    A necessary extension of the surface flux transport model

    Full text link
    Customary two-dimensional flux transport models for the evolution of the magnetic field at the solar surface do not account for the radial structure and the volume diffusion of the magnetic field. When considering the long-term evolution of magnetic flux, this omission can lead to an unrealistic long-term memory of the system and to the suppression of polar field reversals. In order to avoid such effects, we propose an extension of the flux transport model by a linear decay term derived consistently on the basis of the eigenmodes of the diffusion operator in a spherical shell. A decay rate for each eigenmode of the system is determined and applied to the corresponding surface part of the mode evolved in the flux transport model. The value of the volume diffusivity associated with this decay term can be estimated to be in the range 50--100 km^2/s by considering the reversals of the polar fields in comparison of flux transport simulations with observations. We show that the decay term prohibits a secular drift of the polar field in the case of cycles of varying strength, like those exhibited by the historical sunspot record.Comment: for further information visit: http://solweb.oma.be/users/baumann

    The Effects of Additives on the Physical Properties of Electroformed Nickel and on the Stretch of Photoelectroformed Nickel Components

    Full text link
    The process of nickel electroforming is becoming increasingly important in the manufacture of MST products, as it has the potential to replicate complex geometries with extremely high fidelity. Electroforming of nickel uses multi-component electrolyte formulations in order to maximise desirable product properties. In addition to nickel sulphamate (the major electrolyte component), formulation additives can also comprise nickel chloride (to increase nickel anode dissolution), sulphamic acid (to control pH), boric acid (to act as a pH buffer), hardening/levelling agents (to increase deposit hardness and lustre) and wetting agents (to aid surface wetting and thus prevent gas bubbles and void formation). This paper investigates the effects of some of these variables on internal stress and stretch as a function of applied current density.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    The Role of Starbursts in the Formation of Galaxies & Active Galactic Nuclei

    Full text link
    Starbursts are episodes of intense star-formation in the central regions of galaxies, and are the sites of roughly 25% of the high-mass star-formation in the local universe. In this contribution I review the role starbursts play in the formation and evolution of galaxies, the intergalactic medium, and active galactic nuclei. Four major conclusions are drawn. 1) Starburst galaxies are good analogues (in fact, the only plausible local analogues) to the known population of star-forming galaxies at high-redshift. 2) Integrated over cosmic time, supernova-driven galactic-winds (`superwinds') play an essential role in the evolution of galaxies and the inter-galactic medium. 3) Circumnuclear starbursts are an energetically-significant component of the Seyfert phenomenon. 4) The evolution of the population of the host galaxies of radio-quiet quasars is significantly different than that of powerful radio galaxies, and is at least qualitatively consistent with the standard picture of the hierarchical assembly of massive galaxies at relatively late times.Comment: 16 pages, 4 figures, Royal Society discussion meeting `The formation of galaxies

    The physics of the Applegate mechanism: Eclipsing time variations from magnetic activity

    Full text link
    Since its proposal in 1992, the Applegate mechanism has been discussed as a potential intrinsical mechanism to explain transit timing variations in various kinds of close binary systems. Most analytical arguments presented so far focused on the energetic feasibility of the mechanism, while applying rather crude one- or two-zone prescriptions to describe the exchange of angular momentum within the star. In this paper, we present the most detailed approach to date to describe the physics giving rise to the modulation period from kinetic and magnetic fluctuations. Assuming moderate levels of stellar parameter fluctuations, we find that the resulting binary period variations are one or two orders of magnitude lower than the observed values in RS-CVn like systems, supporting the conclusion of existing theoretical work that the Applegate mechanism may not suffice to produce the observed variations in these systems. The most promising Applegate candidates are low-mass post-common-envelope binaries (PCEBs) with binary separations 1 R\lesssim 1~\mathrm{R}_\odot and secondary masses in the range of 0.30 M0.30~\mathrm{M}_\odot and 0.36 M0.36~\mathrm{M}_\odot.Comment: 10 pages, 8 figures. Accepted for publication in A&

    Non-equilibrium structural phase transitions of the vortex lattice in MgB2

    Full text link
    We have studied non-equilibrium phase transitions in the vortex lattice in superconducting MgB2, where metastable states are observed in connection with an intrinsically continuous rotation transition. Using small-angle neutron scattering and a stop-motion technique, we investigated the manner in which the metastable vortex lattice returns to the equilibrium state under the influence of an ac magnetic field. This shows a qualitative difference between the supercooled case which undergoes a discontinuous transition, and the superheated case where the transition to the equilibrium state is continuous. In both cases the transition may be described by an an activated process, with an activation barrier that increases as the metastable state is suppressed, as previously reported for the supercooled vortex lattice [E. R. Louden et al., Phys. Rev. B 99, 060502(R) (2019)]. Separate preparations of superheated metastable vortex lattices with different domain populations showed an identical transition towards the equilibrium state. This provides further evidence that the vortex lattice metastability, and the kinetics associated with the transition to the equilibrium state, is governed by nucleation and growth of domains and the associated domain boundaries.Comment: 27 pages, 10 figures. arXiv admin note: text overlap with arXiv:1812.0597

    An algorithm for correcting CoRoT raw light curves

    Full text link
    We introduce the CoRoT detrend algorithm (CDA) for detrending CoRoT stellar light curves. The algorithm CDA has the capability to remove random jumps and systematic trends encountered in typical CoRoT data in a fully automatic fashion. Since enormous jumps in flux can destroy the information content of a light curve, such an algorithm is essential. From a study of 1030 light curves in the CoRoT IRa01 field, we developed three simple assumptions which upon CDA is based. We describe the algorithm analytically and provide some examples of how it works. We demonstrate the functionality of the algorithm in the cases of CoRoT0102702789, CoRoT0102874481, CoRoT0102741994, and CoRoT0102729260. Using CDA in the specific case of CoRoT0102729260, we detect a candidate exoplanet around the host star of spectral type G5, which remains undetected in the raw light curve, and estimate the planetary parameters to be Rp=6.27Re and P=1.6986 days.Comment: 8 pages, 13 figure

    Topological energy barrier for skyrmion lattice formation in MnSi

    Full text link
    We report the direct measurement of the topological skyrmion energy barrier through a hysteresis of the skyrmion lattice in the chiral magnet MnSi. Measurements were made using small-angle neutron scattering with a custom-built resistive coil to allow for high-precision minor hysteresis loops. The experimental data was analyzed using an adapted Preisach model to quantify the energy barrier for skyrmion formation and corroborated by the minimum-energy path analysis based on atomistic spin simulations. We reveal that the skyrmion lattice in MnSi forms from the conical phase progressively in small domains, each of which consisting of hundreds of skyrmions, and with an activation barrier of several eV.Comment: Final accepted versio
    corecore