2,345 research outputs found

    The Era of Do-It-Yourself Aid: Possibilities and Perils

    Get PDF

    The ALDH gene superfamily of Arabidopsis

    No full text

    A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize

    Get PDF
    Citation: Mei, W. B., Liu, S. Z., Schnable, J. C., Yeh, C. T., Springer, N. M., Schnable, P. S., & Barbazuk, W. B. (2017). A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize. Frontiers in Plant Science, 8, 19. https://doi.org/10.3389/fpls.2017.00694Identifying and characterizing alternative splicing (AS) enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping) do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 X Mo17 recombinant inbred lines (RILs) identified splicing QTL (sQTL). The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize

    GPU-based Parallelization of a Sub-pixel Highresolution Stereo Matching Algorithm for Highthroughput Biomass Sorghum Phenotyping

    Get PDF
    To automate high-throughput phenotyping for infield biomass sorghum morphological traits characterization, a capable 3D vision system that can overcome challenges imposed by field conditions including variable lighting, strong wind and extreme plant height is needed. Among all available 3D sensors, traditional stereo cameras offer a viable solution to obtaining high-resolution 3D point-cloud data with the use of high-accuracy (sub-pixel) stereo matching algorithms, which, however, are inevitably highly computational. This paper reports a GPU-based parallelized implementation of the PatchMatch Stereo algorithm which reconstructs highly slanted leaf and stalk surfaces of sorghum at high speed from high-resolution stereo image pairs. Our algorithm enhanced accuracy and smoothness by using L2 norm for color distance calculation instead of L1 norm and speeded up convergence by testing the plane of the lowest cost within a local window in addition to the original spatial propagation. To better handle textureless regions, after left-right consistency check, the disparity of an occluded pixel is assigned to that of a nearby non-occluded pixel with the most similar pattern. Some of these occluded pixels in textureless region would survive a following left-right consistency check. Therefore more valid pixels would exist in textureless regions for occlusion filling. Accuracy and performance were evaluated on Middlebury datasets as well as our sorghum datasets. It achieved a high ranking in Middlebury table of subpixel precision and revealed subtle details on leaf and stalk surfaces. The output disparity maps were used to estimate stalk diameters of different varieties and growth stages. The results showed high correlation to hand measurement

    Genetic control of maize shoot apical meristem architecture

    Get PDF
    The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 · Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (629 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions. © 2014 Thompson et al

    Histone Lysine Methyltransferase SDG8 Is Involved in Brassinosteroid-Regulated Gene Expression in Arabidopsis thaliana

    Get PDF
    Citation: Wang, X., Chen, J., Xie, Z., Liu, S., Nolan, T., Ye, H., et al. (2014). Histone lysine methyltransferase SDG8 is involved in brassinosteroid- regulated gene expression in arabidopsis thaliana.The plant steroid hormones, brassinosteroids (BRs), play important roles in plant growth, development and responses to environmental stresses. BRs signal through receptors localized to the plasma membrane and other signaling components to regulate the BES1/BZR1 family of transcription factors, which modulates the expression of 4,000-5,000 genes. How BES1/BZR1 and their interacting proteins function to regulate the large number of genes are not completely understood. Here we report that histone lysine methyltransferase SDG8, implicated in Histone 3 lysine 36 di- and tri-methylation (H3K36me2 and me3), is involved in BR-regulated gene expression. BES1 interacts with SDG8, directly or indirectly through IWS1, a transcription elongation factor involved in BR-regulated gene expression. The knockout mutant sdg8 displays a reduced growth phenotype with compromised BR responses. Global gene expression studies demonstrated that SDG8 plays a major role in BR-regulated gene expression as more than half of BR-regulated genes are differentially affected in sdg8 mutant. A Chromatin Immunoprecipitation (ChIP) experiment showed that H3K36me3 is reduced in BR-regulated genes in the sdg8 mutant. Based on these results, we propose that SDG8 plays an essential role in mediating BR-regulated gene expression. Our results thus reveal a major mechanism by which histone modifications dictate hormonal regulation of gene expression

    The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield

    Get PDF
    The rth3 (roothairless 3) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA family are involved in various types of cell expansion and cell wall biosynthesis. The rth3 gene belongs to a monocot-specific clade of the COBRA gene family comprising two maize and two rice genes. While the rice (Oryza sativa) gene OsBC1L1 appears to be orthologous to rth3 based on sequence similarity (86% identity at the protein level) and maize/rice synteny, the maize (Zea mays L.) rth3-like gene does not appear to be a functional homolog of rth3based on their distinct expression profiles. Massively parallel signature sequencing analysis detected rth3 expression in all analyzed tissues, but at relatively low levels, with the most abundant expression in primary roots where the root hair phenotype is manifested.In situ hybridization experiments confine rth3 expression to root hair-forming epidermal cells and lateral root primordia. Remarkably, in replicated field trials involving near-isogenic lines, the rth3 mutant conferred significant losses in grain yield

    Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth

    Get PDF
    Citation: Li, L., Hey, S., Liu, S. Z., Liu, Q., McNinch, C., Hu, H. C., . . . Hochholdinger, F. (2016). Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth. Scientific Reports, 6, 12. doi:10.1038/srep34395Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis
    corecore