1,368 research outputs found

    Blow-up and global existence for a general class of nonlocal nonlinear coupled wave equations

    Get PDF
    We study the initial-value problem for a general class of nonlinear nonlocal coupled wave equations. The problem involves convolution operators with kernel functions whose Fourier transforms are nonnegative. Some well-known examples of nonlinear wave equations, such as coupled Boussinesq-type equations arising in elasticity and in quasi-continuum approximation of dense lattices, follow from the present model for suitable choices of the kernel functions. We establish local existence and sufficient conditions for finite time blow-up and as well as global existence of solutions of the problem.Comment: 11 pages. Minor changes and added reference

    Guidance on Stimulus Materials

    Get PDF
    PACHELBEL WP4 “Stimulus Materials” uses findings from WP3 (Policy Assumptions) and from additional sources to prepare stimulus materials for the group-based process “STAVE” implemented in WP5. The output was material to inform and stimulate the group-based process. The material was of two types: a set of questionnaires common to all partners (EVOC/CAPA/SIMI questionnaires), and material that is issue-specific and individually produced for each country. EVOC/CAPA/SIMI short questionnaires serve as a comparative tool between countries, giving insight on the social construction of “sustainable consumption” across the PACHELBEL population. Partners asked participants to fill out the set individually at the first meeting of the STAVE group, results were then analyzed and data were fed back for discussion by group participants at their second meeting. A “re-test” was then conducted at the third of three group meetings. The present report details the representations revealed through this methodology – but moreover the impact of applying such a technique in STAVE groups in France, Germany, Romania, Spain, Sweden and the UK (where the methodology was slightly altered). The issue-and-country-specific material consists of an informative simulated newspaper article on the particular issue addressed in a given STAVE process, and/or other materials (for example, humorous drawings). The report details how this material was developed, and the experience of applying these stimulus materials in each country. On this basis, guidance for future STAVE processes is offered. Foremost among observations is that PACHELBEL stimulus materials serve a purpose that is distinct from that of “group exercises” as developed in WP5. The materials contributing to the formation of a group identity, a reflexive group norm, and a shared information basis. As such, stimulus materials prepare the group for a cooperative investigative process

    Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2

    Get PDF
    A variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time- resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.4. The light-induced increase in final anisotropy for acetamidofluorescein bound to the channel variant with a prolonged conducting state clearly shows that the formation of the open channel state is associated with a large conformational change at the cytoplasmic surface, consistent with an outward tilt of helix B. Furthermore, results from solute accessibility studies of the cytoplasmic end of helix B suggest a pH-dependent structural heterogeneity that appears below pH 7. At pH 7.4 conformational homogeneity was observed, whereas at pH 6.0 two protein fractions exist, including one in which residue 79 is buried. This inaccessible fraction amounts to 66% in nanodiscs and 82% in micelles. Knowledge about pH-dependent structural heterogeneity may be important for CrChR2 applications in optogenetics

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters ϵ\epsilon and δ\delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.Comment: 24 pages, to appear in Discrete and Continuous Dynamical System

    A simulation-guided fluorescence correlation spectroscopy tool to investigate the protonation dynamics of cytochrome c oxidase

    Get PDF
    Fluorescence correlation spectroscopy (FCS) is a single molecule based technique to temporally resolve rate-dependent processes by correlating the fluorescence fluctuations of individual molecules traversing through a confocal volume. In addition, chemical processes like protonation or intersystem crossing can be monitored in the sub-microsecond range. FCS thereby provides an excellent tool for investigations of protonation dynamics in proton pumps like cytochrome c oxidase (CcO). To achieve this, the pH- dependent fluorescent dye fluorescein was attached as a protonation probe to the CcO surface via site-specific labeling of single reactive cysteines that are located close to the entry point of a proton input channel (K-pathway). The analysis of protonation dynamics is complicated by overlapping triplet and protonation rates of the fluorophore. A Monte Carlo simulation based algorithm was developed to facilitate discrimination of these temporally overlapping processes thus allowing for improved protonation reaction rate determination. Using this simulation-guided approach we determined precise local proton association and dissociation rates and provide information about protein surface effects, such as proton collecting antennae, on the transport properties of proton transfer channels

    A sample of radio-loud QSOs at redshift ~ 4

    Get PDF
    We obtained spectra of 60 red, starlike objects (E< 18.8) identified with FIRST radio sources, S_{1.4GHz} > 1 mJy. Eight are QSOs with redshift z> 3.6.Combined with our pilot search (Benn et al 2002), our sample of 121 candidates yields a total of 18 z > 3.6 QSOs (10 of these with z > 4.0). 8% of candidates with S_{1.4GHz} 10 mJy are QSOs with z > 3.6. The surface density of E 1mJy, z> 4 QSOs is 0.003 deg^{-2}. This is currently the only well-defined sample of radio-loud QSOs at z ~ 4 selected independently of radio spectral index. The QSOs are highly luminous in the optical (8 have M_B < -28, q_0 = 0.5, H_0 = 50 kms^{-1}Mpc^{-1}). The SEDs are as varied as those seen in optical searches for high-redshift QSOs, but the fraction of objects with weak (strongly self-absorbed) Ly alpha emission is marginally higher (3 out of 18) than for high-redshift QSOs from SDSS (5 out of 96).Comment: Accepted for publication in MNRAS, 9 pages, Latex, 5 postscript figures, 1 landscape table (postscript

    Variable depth KDV equations and generalizations to more nonlinear regimes

    Get PDF
    We study here the water-waves problem for uneven bottoms in a highly nonlinear regime where the small amplitude assumption of the Korteweg-de Vries (KdV) equation is enforced. It is known, that for such regimes, a generalization of the KdV equation (somehow linked to the Camassa-Holm equation) can be derived and justified by A. Constantin, D. Lannes "The hydrodynamical relevance of the Camassa-Holm and Degasperis-Processi equations" when the bottom is flat. We generalize here this result with a new class of equations taking into account variable bottom topographies. Of course, the many variable depth KdV equations existing in the literature are recovered as particular cases. Various regimes for the topography regimes are investigated and we prove consistency of these models, as well as a full justification for some of them. We also study the problem of wave breaking for our new variable depth and highly nonlinear generalizations of the KDV equations

    Discovery of six high-redshift quasars with the Lijiang 2.4m telescope and the Multiple Mirror Telescope

    Full text link
    Quasars with redshifts greater than 4 are rare, and can be used to probe the structure and evolution of the early universe. Here we report the discovery of six new quasars with ii-band magnitudes brighter than 19.5 and redshifts between 2.4 and 4.6 from the YFOSC spectroscopy of the Lijiang 2.4m telescope in February, 2012. These quasars are in the list of z>3.6z>3.6 quasar candidates selected by using our proposed JK/iYJ-K/i-Y criterion and the photometric redshift estimations from the SDSS optical and UKIDSS near-IR photometric data. Nine candidates were observed by YFOSC, and five among six new quasars were identified as z>3.6z>3.6 quasars. One of the other three objects was identified as a star and the other two were unidentified due to the lower signal-to-noise ratio of their spectra. This is the first time that z>4z>4 quasars have been discovered using a telescope in China. Thanks to the Chinese Telescope Access Program (TAP), the redshift of 4.6 for one of these quasars was confirmed by the Multiple Mirror Telescope (MMT) Red Channel spectroscopy. The continuum and emission line properties of these six quasars, as well as their central black hole masses and Eddington ratios, were obtained.Comment: 7 pages, 2 figures, published in Research in Astronomy and Astrophysics (RAA) as a lette

    Holder exponents of irregular signals and local fractional derivatives

    Full text link
    It has been recognized recently that fractional calculus is useful for handling scaling structures and processes. We begin this survey by pointing out the relevance of the subject to physical situations. Then the essential definitions and formulae from fractional calculus are summarized and their immediate use in the study of scaling in physical systems is given. This is followed by a brief summary of classical results. The main theme of the review rests on the notion of local fractional derivatives. There is a direct connection between local fractional differentiability properties and the dimensions/ local Holder exponents of nowhere differentiable functions. It is argued that local fractional derivatives provide a powerful tool to analyse the pointwise behaviour of irregular signals and functions.Comment: 20 pages, Late

    Quasar Clustering from SDSS DR5: Dependences on Physical Properties

    Full text link
    Using a homogenous sample of 38,208 quasars with a sky coverage of 4000deg24000 {\rm deg^2} drawn from the SDSS Data Release Five quasar catalog, we study the dependence of quasar clustering on luminosity, virial black hole mass, quasar color, and radio loudness. At z<2.5z<2.5, quasar clustering depends weakly on luminosity and virial black hole mass, with typical uncertainty levels 10\sim 10% for the measured correlation lengths. These weak dependences are consistent with models in which substantial scatter between quasar luminosity, virial black hole mass and the host dark matter halo mass has diluted any clustering difference, where halo mass is assumed to be the relevant quantity that best correlates with clustering strength. However, the most luminous and most massive quasars are more strongly clustered (at the 2σ\sim 2\sigma level) than the remainder of the sample, which we attribute to the rapid increase of the bias factor at the high-mass end of host halos. We do not observe a strong dependence of clustering strength on quasar colors within our sample. On the other hand, radio-loud quasars are more strongly clustered than are radio-quiet quasars matched in redshift and optical luminosity (or virial black hole mass), consistent with local observations of radio galaxies and radio-loud type 2 AGN. Thus radio-loud quasars reside in more massive and denser environments in the biased halo clustering picture. Using the Sheth et al.(2001) formula for the linear halo bias, the estimated host halo mass for radio-loud quasars is 1013h1M\sim 10^{13} h^{-1}M_\odot, compared to 2×1012h1M\sim 2\times 10^{12} h^{-1}M_\odot for radio-quiet quasar hosts at z1.5z\sim 1.5.Comment: Updated version; accepted for publication in Ap
    corecore