1,379 research outputs found

    Momentum flux density, kinetic energy density and their fluctuations for one-dimensional confined gases of non-interacting fermions

    Full text link
    We present a Green's function method for the evaluation of the particle density profile and of the higher moments of the one-body density matrix in a mesoscopic system of N Fermi particles moving independently in a linear potential. The usefulness of the method is illustrated by applications to a Fermi gas confined in a harmonic potential well, for which we evaluate the momentum flux and kinetic energy densities as well as their quantal mean-square fluctuations. We also study some properties of the kinetic energy functional E_{kin}[n(x)] in the same system. Whereas a local approximation to the kinetic energy density yields a multi-valued function, an exact single-valued relationship between the density derivative of E_{kin}[n(x)] and the particle density n(x) is demonstrated and evaluated for various values of the number of particles in the system.Comment: 10 pages, 5 figure

    Autoantibodies to aS1-Casein Are Induced by Breast-Feeding

    Full text link
    Background: The generation of antibodies is impaired in newborns due to an immature immune system and reduced exposure to pathogens due to maternally derived antibodies and placental functions. During nursing, the immune system of newborns is challenged with multiple milk-derived proteins. Amongst them, caseins are the main constituent. In particular, human aS1-casein (CSN1S1) was recently shown to possess immunomodulatory properties. We were thus interested to determine if auto-antibodies to CSN1S1 are induced by breast-feeding and may be sustained into adulthood. Methods: 62 sera of healthy adult individuals who were (n = 37) or were not (n = 25) breast-fed against human CSN1S1 were investigated by a new SD (surface display)-ELISA. For cross-checking, these sera were tested for anti Epstein-Barr virus (EBV) antibodies by a commercial ELISA. Results: IgG-antibodies were predominantly detected in individuals who had been nursed. At a cut-off value of 0.4, the SDELISA identified individuals with a history of having been breast-fed with a sensitivity of 80% and a specificity of 92%. Under these conditions, 35 out of 37 sera from healthy donors, who where breast-fed, reacted positively but only 5 sera of the 25 donors who were not breast-fed. The duration of breast-feeding was of no consequence to the antibody reaction as some healthy donors were only short term breast-fed (5 days minimum until 6 weeks maximum), but exhibited significant serum reaction against human CSN1S1 nonetheless. Conclusion: We postulate that human CSN1S1 is an autoantigen. The antigenicity is orally determined, caused by breastfeeding, and sustained into adulthood

    Neutrino Interferometry In Curved Spacetime

    Get PDF
    Gravitational lensing introduces the possibility of multiple (macroscopic) paths from an astrophysical neutrino source to a detector. Such a multiplicity of paths can allow for quantum mechanical interference to take place that is qualitatively different to neutrino oscillations in flat space. After an illustrative example clarifying some under-appreciated subtleties of the phase calculation, we derive the form of the quantum mechanical phase for a neutrino mass eigenstate propagating non-radially through a Schwarzschild metric. We subsequently determine the form of the interference pattern seen at a detector. We show that the neutrino signal from a supernova could exhibit the interference effects we discuss were it lensed by an object in a suitable mass range. We finally conclude, however, that -- given current neutrino detector technology -- the probability of such lensing occurring for a (neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation -- accepted for publication in Phys.Rev.D. Extra author adde

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    Quasars and their host galaxies

    Full text link
    This review attempts to describe developments in the fields of quasar and quasar host galaxies in the past five. In this time period, the Sloan and 2dF quasar surveys have added several tens of thousands of quasars, with Sloan quasars being found to z>6. Obscured, or partially obscured quasars have begun to be found in significant numbers. Black hole mass estimates for quasars, and our confidence in them, have improved significantly, allowing a start on relating quasar properties such as radio jet power to fundamental parameters of the quasar such as black hole mass and accretion rate. Quasar host galaxy studies have allowed us to find and characterize the host galaxies of quasars to z>2. Despite these developments, many questions remain unresolved, in particular the origin of the close relationship between black hole mass and galaxy bulge mass/velocity dispersion seen in local galaxies.Comment: Review article, to appear in Astrophysics Update

    Decoherence in trapped ions due to polarization of the residual background gas

    Full text link
    We investigate the mechanism of damping and heating of trapped ions associated with the polarization of the residual background gas induced by the oscillating ions themselves. Reasoning by analogy with the physics of surface electrons in liquid helium, we demonstrate that the decay of Rabi oscillations observed in experiments on 9Be+ can be attributed to the polarization phenomena investigated here. The measured sensitivity of the damping of Rabi oscillations with respect to the vibrational quantum number of a trapped ion is also predicted in our polarization model.Comment: 26 pdf pages with 5 figures, http://www.df.ufscar.br/~quantum

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    Probabilistic Anonymity

    Get PDF
    The concept of anonymity comes into play in a wide range of situations, varying from voting and anonymous donations to postings on bulletin boards and sending mails. A formal definition of this concept has been given in literature in terms of nondeterminism. In this paper, we investigate a notion of anonymity based on probability theory, and we we discuss the relation with the nondeterministic one. We then formulate this definition in terms of observables for processes in the probabilistic pipi-calculus, and propose a method to verify automatically the anonymity property. We illustrate the method by using the example of the dining cryptographers

    Can forest management based on natural disturbances maintain ecological resilience?

    Get PDF
    Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecological resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this review we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under consideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that (i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a generator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strategies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest's capacity to reorganize after disturbance
    corecore