24 research outputs found
Investigating Off-shell Stability of Anti-de Sitter Space in String Theory
We propose an investigation of stability of vacua in string theory by
studying their stability with respect to a (suitable) world-sheet
renormalization group (RG) flow. We prove geometric stability of (Euclidean)
anti-de Sitter (AdS) space (i.e., ) with respect to the simplest
RG flow in closed string theory, the Ricci flow. AdS space is not a fixed point
of Ricci flow. We therefore choose an appropriate flow for which it is a fixed
point, prove a linear stability result for AdS space with respect to this flow,
and then show this implies its geometric stability with respect to Ricci flow.
The techniques used can be generalized to RG flows involving other fields. We
also discuss tools from the mathematics of geometric flows that can be used to
study stability of string vacua.Comment: 29 pages, references added in this version to appear in Classical and
Quantum Gravit
Gated ion spectrometer for spectroscopy of neutral particles
A new design of an ion mass spectrometer for the laser-plasma particle diagnostic, which is capable to detect simultaneously also neutral particles, is described. The particles are detected with microchannel-plate detector operating in a gated mode. This allows us to separate x-rays and energetic electrons from other stray plasma emissions, e.g., neutral particles, which hit the detector in the same place. The ion energies are measured with the spectrometer in energy intervals corresponding to their time-of-flight within the gating window. The latter also defines the energy interval of neutrals recorded with the same time-of-flight. The spectrum of neutral particles can be reconstructed by subsequently collecting different parts of the spectrum while applying different delays on the gate pulse. That separation-in-time technique (time-of-flight mass spectrometry) in combination with the spatially separating mass analyzer (ion mass spectrometer) is used for the neutral particles spectroscopy
Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets
Experiments on ion acceleration by irradiation of ultra-thin diamond-like
carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with
laser pulses of ultra-high contrast and linear polarization, are presented. A
maximum energy of 13MeV for protons and 71MeV for carbon ions is observed with
a conversion efficiency of > 10%. Two-dimensional particle-in-cell (PIC)
simulations reveal that the increase in ion energies can be attributed to a
dominantly collective rather than thermal motion of the foil electrons, when
the target becomes transparent for the incident laser pulse
Proceedings of the 13th annual conference of INEBRIA
CITATION: Watson, R., et al. 2016. Proceedings of the 13th annual conference of INEBRIA. Addiction Science & Clinical Practice, 11:13, doi:10.1186/s13722-016-0062-9.The original publication is available at https://ascpjournal.biomedcentral.comENGLISH SUMMARY : Meeting abstracts.https://ascpjournal.biomedcentral.com/articles/10.1186/s13722-016-0062-9Publisher's versio
