24 research outputs found

    Investigating Off-shell Stability of Anti-de Sitter Space in String Theory

    Full text link
    We propose an investigation of stability of vacua in string theory by studying their stability with respect to a (suitable) world-sheet renormalization group (RG) flow. We prove geometric stability of (Euclidean) anti-de Sitter (AdS) space (i.e., Hn\mathbf{H}^n) with respect to the simplest RG flow in closed string theory, the Ricci flow. AdS space is not a fixed point of Ricci flow. We therefore choose an appropriate flow for which it is a fixed point, prove a linear stability result for AdS space with respect to this flow, and then show this implies its geometric stability with respect to Ricci flow. The techniques used can be generalized to RG flows involving other fields. We also discuss tools from the mathematics of geometric flows that can be used to study stability of string vacua.Comment: 29 pages, references added in this version to appear in Classical and Quantum Gravit

    Gated ion spectrometer for spectroscopy of neutral particles

    Get PDF
    A new design of an ion mass spectrometer for the laser-plasma particle diagnostic, which is capable to detect simultaneously also neutral particles, is described. The particles are detected with microchannel-plate detector operating in a gated mode. This allows us to separate x-rays and energetic electrons from other stray plasma emissions, e.g., neutral particles, which hit the detector in the same place. The ion energies are measured with the spectrometer in energy intervals corresponding to their time-of-flight within the gating window. The latter also defines the energy interval of neutrals recorded with the same time-of-flight. The spectrum of neutral particles can be reconstructed by subsequently collecting different parts of the spectrum while applying different delays on the gate pulse. That separation-in-time technique (time-of-flight mass spectrometry) in combination with the spatially separating mass analyzer (ion mass spectrometer) is used for the neutral particles spectroscopy

    Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets

    Full text link
    Experiments on ion acceleration by irradiation of ultra-thin diamond-like carbon (DLC) foils, with thicknesses well below the skin depth, irradiated with laser pulses of ultra-high contrast and linear polarization, are presented. A maximum energy of 13MeV for protons and 71MeV for carbon ions is observed with a conversion efficiency of > 10%. Two-dimensional particle-in-cell (PIC) simulations reveal that the increase in ion energies can be attributed to a dominantly collective rather than thermal motion of the foil electrons, when the target becomes transparent for the incident laser pulse

    Proceedings of the 13th annual conference of INEBRIA

    Get PDF
    CITATION: Watson, R., et al. 2016. Proceedings of the 13th annual conference of INEBRIA. Addiction Science & Clinical Practice, 11:13, doi:10.1186/s13722-016-0062-9.The original publication is available at https://ascpjournal.biomedcentral.comENGLISH SUMMARY : Meeting abstracts.https://ascpjournal.biomedcentral.com/articles/10.1186/s13722-016-0062-9Publisher's versio
    corecore