2,555 research outputs found
Diffusion and jump-length distribution in liquid and amorphous CuZr
Using molecular dynamics simulation, we calculate the distribution of atomic
jum ps in CuZr in the liquid and glassy states. In both states
the distribution of jump lengths can be described by a temperature independent
exponential of the length and an effective activation energy plus a
contribution of elastic displacements at short distances. Upon cooling the
contribution of shorter jumps dominates. No indication of an enhanced
probability to jump over a nearest neighbor distance was found. We find a
smooth transition from flow in the liquid to jumps in the g lass. The
correlation factor of the diffusion constant decreases with decreasing
temperature, causing a drop of diffusion below the Arrhenius value, despite an
apparent Arrhenius law for the jump probability
Reinforcement of wood with natural fibers
This paper describes an experimental programme which examines the reinforcement in flexure of timber beams with composite materials based on natural fibers in the form of fabrics made from hemp, flax, basalt and bamboo fibers. The industrial use of natural fibers has been continuously increasing since 1990s due to their advantages in terms of production costs, pollution emissions and energy consumption for production and disposal. The technique allows the reinforcement of the intrados of beams, avoiding the dismantling of the overlying part of the structure with significant savings in terms of costs and work time. The test program consists of three phases incorporating 45 beams. The bending tests on the wooden elements made it possible to measure the increase in capacity and stiffness resulting from the composite reinforcement. This was applied to beams, creating different arrangements and using different quantities (number of layers). Despite the diversity of the various tests carried out, the results obtained in some cases showed significant increases in terms of load-carrying capacity and in deflection ductility
Survey-based naming conventions for use in OBO Foundry ontology development
A wide variety of ontologies relevant to the biological and medical domains are
available through the OBO Foundry portal, and their number is growing rapidly. Integration of these ontologies, while requiring considerable effort, is extremely desirable. However, heterogeneities in format and style pose serious obstacles to such integration. In particular, inconsistencies in naming conventions can impair the readability and navigability of ontology class hierarchies, and hinder their alignment and integration. While other sources of diversity are tremendously complex and challenging, agreeing a set of common naming conventions is an achievable goal, particularly if those conventions are based on lessons drawn from pooled practical
experience and surveys of community opinion. We summarize a review of existing naming conventions and highlight certain disadvantages with respect to general applicability in the biological domain. We also present the results of a survey carried out to establish which naming conventions are currently employed by OBO Foundry ontologies and to determine what their special requirements regarding the naming
of entities might be. Lastly, we propose an initial set of typographic, syntactic and semantic conventions for labelling classes in OBO Foundry ontologies. Adherence to common naming conventions is more than just a matter of aesthetics. Such conventions provide guidance to ontology creators, help developers avoid flaws and
inaccuracies when editing, and especially when interlinking, ontologies. Common naming conventions will also assist consumers of ontologies to more readily understand what meanings were intended by the authors of ontologies used in annotating bodies of data
Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations
The approach of the elastic continuum limit in small amorphous bodies formed
by weakly polydisperse Lennard-Jones beads is investigated in a systematic
finite-size study. We show that classical continuum elasticity breaks down when
the wavelength of the sollicitation is smaller than a characteristic length of
approximately 30 molecular sizes. Due to this surprisingly large effect
ensembles containing up to N=40,000 particles have been required in two
dimensions to yield a convincing match with the classical continuum predictions
for the eigenfrequency spectrum of disk-shaped aggregates and periodic bulk
systems. The existence of an effective length scale \xi is confirmed by the
analysis of the (non-gaussian) noisy part of the low frequency vibrational
eigenmodes. Moreover, we relate it to the {\em non-affine} part of the
displacement fields under imposed elongation and shear. Similar correlations
(vortices) are indeed observed on distances up to \xi~30 particle sizes.Comment: 28 pages, 13 figures, 3 table
Crystal-like high frequency phonons in the amorphous phases of solid water
The high frequency dynamics of low- (LDA) and high-density amorphous-ice
(HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering
(IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like
excitations are observed, and the longitudinal acoustic branch is identified up
to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of
these excitations is in sharp contrast with the broad features observed in all
amorphous systems studied so far. The "crystal-like" behavior of amorphous
ices, therefore, implies a considerable reduction in the number of decay
channels available to sound-like excitations which is assimilated to low local
disorder.Comment: 4 pages, 3 figure
Depth-dependent critical behavior in V2H
Using X-ray diffuse scattering, we investigate the critical behavior of an
order-disorder phase transition in a defective "skin-layer" of V2H. In the
skin-layer, there exist walls of dislocation lines oriented normal to the
surface. The density of dislocation lines within a wall decreases continuously
with depth. We find that, because of this inhomogeneous distribution of
defects, the transition effectively occurs at a depth-dependent local critical
temperature. A depth-dependent scaling law is proposed to describe the
corresponding critical ordering behavior.Comment: 5 pages, 4 figure
Sparse random matrices and vibrational spectra of amorphous solids
A random matrix approach is used to analyze the vibrational properties of
amorphous solids. We investigated a dynamical matrix M=AA^T with non-negative
eigenvalues. The matrix A is an arbitrary real NxN sparse random matrix with n
independent non-zero elements in each row. The average values =0 and
dispersion =V^2 for all non-zero elements. The density of vibrational
states g(w) of the matrix M for N,n >> 1 is given by the Wigner quarter circle
law with radius independent of N. We argue that for n^2 << N this model can be
used to describe the interaction of atoms in amorphous solids. The level
statistics of matrix M is well described by the Wigner surmise and corresponds
to repulsion of eigenfrequencies. The participation ratio for the major part of
vibrational modes in three dimensional system is about 0.2 - 0.3 and
independent of N. Together with term repulsion it indicates clearly to the
delocalization of vibrational excitations. We show that these vibrations spread
in space by means of diffusion. In this respect they are similar to diffusons
introduced by Allen, Feldman, et al., Phil. Mag. B 79, 1715 (1999) in amorphous
silicon. Our results are in a qualitative and sometimes in a quantitative
agreement with molecular dynamic simulations of real and model glasses.Comment: 24 pages, 7 figure
Depth-dependent ordering, two-length-scale phenomena and crossover behavior in a crystal featuring a skin-layer with defects
Structural defects in a crystal are responsible for the "two length-scale"
behavior, in which a sharp central peak is superimposed over a broad peak in
critical diffuse X-ray scattering. We have previously measured the scaling
behavior of the central peak by scattering from a near-surface region of a V2H
crystal, which has a first-order transition in the bulk. As the temperature is
lowered toward the critical temperature, a crossover in critical behavior is
seen, with the temperature range nearest to the critical point being
characterized by mean field exponents. Near the transition, a small two-phase
coexistence region is observed. The values of transition and crossover
temperatures decay with depth. An explanation of these experimental results is
here proposed by means of a theory in which edge dislocations in the
near-surface region occur in walls oriented in the two directions normal to the
surface. The strain caused by the dislocation lines causes the ordering in the
crystal to occur as growth of roughly cylindrically shaped regions. After the
regions have reached a certain size, the crossover in the critical behavior
occurs, and mean field behavior prevails. At a still lower temperature, the
rest of the material between the cylindrical regions orders via a weak
first-order transition.Comment: 12 pages, 8 figure
Irreversible reorganization in a supercooled liquid originates from localised soft modes
The transition of a fluid to a rigid glass upon cooling is a common route of
transformation from liquid to solid that embodies the most poorly understood
features of both phases1,2,3. From the liquid perspective, the puzzle is to
understand stress relaxation in the disordered state. From the perspective of
solids, the challenge is to extend our description of structure and its
mechanical consequences to materials without long range order. Using computer
simulations, we show that the localized low frequency normal modes of a
configuration in a supercooled liquid are causally correlated to the
irreversible structural reorganization of the particles within that
configuration. We also demonstrate that the spatial distribution of these soft
local modes can persist in spite of significant particle reorganization. The
consequence of these two results is that it is now feasible to construct a
theory of relaxation length scales in glass-forming liquids without recourse to
dynamics and to explicitly relate molecular properties to their collective
relaxation.Comment: Published online: 20 July 2008 | doi:10.1038/nphys1025 Available from
http://www.nature.com/nphys/journal/v4/n9/abs/nphys1025.htm
- …
