19 research outputs found
Keyframe Extraction in Endoscopic Video
In medical endoscopy more and more surgeons archive the recorded video streams in a long-term storage. One reason for this development, which is enforced by law in some countries, is to have evidence in case of lawsuits from patients. Another more practical reason is to allow later inspection of previous procedures and also to use parts of such videos for research and for training. However, due to the dramatic amount of video data recorded in a hospital on a daily basis, it is very important to have good preview images for these videos in order to allow for quick filtering of undesired content and for easier browsing through such a video archive. Unfortunately, common shot detection and keyframe extraction methods cannot be used for that video data, because these videos contain unedited and highly similar content, especially in terms of color and texture, and no shot boundaries at all. We propose a new keyframe extraction approach for this special video domain and show that our method is signi�cantly better than a previously proposed approach
Cks1 Is Required for Tumor Cell Proliferation but Not Sufficient to Induce Hematopoietic Malignancies
The Cks1 component of the SCFSkp2 complex is necessary for p27Kip1 ubiquitylation and degradation. Cks1 expression is elevated in various B cell malignancies including Burkitt lymphoma and multiple myeloma. We have previously shown that loss of Cks1 results in elevated p27Kip1 levels and delayed tumor development in a mouse model of Myc-induced B cell lymphoma. Surprisingly, loss of Skp2 in the same mouse model also resulted in elevated p27Kip1 levels but exhibited no impact on tumor onset. This raises the possibility that Cks1 could have other oncogenic activities than suppressing p27Kip1. To challenge this notion we have targeted overexpression of Cks1 to B cells using a conditional retroviral bone marrow transduction-transplantation system. Despite potent ectopic overexpression, Cks1 was unable to promote B cell hyperproliferation or B cell malignancies, indicating that Cks1 is not oncogenic when overexpressed in B cells. Since Skp2 overexpression can drive T-cell tumorigenesis or other cancers we also widened the quest for oncogenic activity of Cks1 by ubiquitously expressing Cks1 in hematopoetic progenitors. At variance with c-Myc overexpression, which caused acute myeloid leukemia, Cks1 overexpression did not induce myeloproliferation or leukemia. Therefore, despite being associated with a poor prognosis in various malignancies, sole Cks1 expression is insufficient to induce lymphoma or a myeloproliferative disease in vivo
Reducing the oxygen concentration of gases delivered from anaesthetic machines unadapted for medical air
High fractional concentrations of inspired oxygen (FiO(2)) delivered over prolonged periods produce characteristic histological changes in the lungs and airway of exposed animals. Modern medical anaesthetic machines are adapted to deliver medical air (FiO(2)=0.21) for the purpose of reducing FiO(2); anaesthetic machines designed for the veterinary market have not been so adapted. Two inexpensive modifications that allow medical air to be added to the gas flow from veterinary anaesthetic machines are described. The advantages and disadvantages of each modification are discussed
Identification of paracrine neuroprotective candidate proteins by a functional assay-driven proteomics approach
Glial cells support neuronal survival and function by secreting neurotrophic cytokines. Retinal Mueller glial cells (RMGs) support retinal neurons, especially photoreceptors. These highly light-sensitive sensory neurons receive vision, and their death results in blinding diseases. It has been proposed that RMGs release factors that support photoreceptor survival, but the nature of these factors remains to be elucidated. To discover such neurotrophic factors, we developed an integrated work flow toward systematic identification of neuroprotective proteins, which are, like most cytokines, expressed only in minute amounts. This strategy can be generally applied to identify secreted bioactive molecules from any body fluid once a recipient cell for this activity is known. Toward this goal we first isolated conditioned medium (CM) from primary porcine RMGs cultured in vitro and tested for survival-promoting activity using primary photoreceptors. We then developed a large scale, microplate-based cellular high content assay that allows rapid assessment of primary photoreceptor survival concomitant with biological activity in vitro. The enrichment strategy of bioactive proteins toward their identification consists of several fractionation steps combined with tests for biological function. Here we combined 1) size fractionation, 2) ion exchange chromatography, 3) reverse phase liquid chromatography, and 4) mass spectrometry (Q-TOF MS/MS or MALDI MS/MS) for protein identification. As a result of this integrated work flow, the insulin-like growth factor-binding proteins IGFBP5 and IGFBP7 and connective tissue growth factor (CTGF) were identified as likely candidates. Cloning and stable expression of these three candidate factors in HEK293 cells produced conditioned medium enriched for either one of the factors. IGFBP5 and CTGF, but not IGFBP7, significantly increased photoreceptor survival when secreted from HEK293 cells and when added to the original RMG-CM. This indicates that the survival-promoting activity in RMG-CM is multifactorial with IGFBP5 and CTGF as an integral part of this activity
Identification of Paracrine Neuroprotective Candidate Proteins by a Functional Assay-driven Proteomics Approach
Video retrieval in laparoscopic video recordings with dynamic content descriptors
In the domain of gynecologic surgery an increasing number of surgeries are performed in a minimally invasive manner. These laparoscopic surgeries require specific psychomotor skills of the operating surgeon, which are difficult to learn and teach. This is the reason why an increasing number of surgeons promote checking video recordings of laparoscopic surgeries for the occurrence of technical errors with surgical actions. This manual surgical quality assessment (SQA) process, however, is very cumbersome and time-consuming when carried out without any support from content-based video retrieval. In this work we propose a video content descriptor called MIDD (Motion Intensity and Direction Descriptor) that can be effectively used to find similar segments in a laparoscopic video database and thereby help surgeons to more quickly inspect other instances of a given error scene. We evaluate the retrieval performance of MIDD with surgical actions from gynecologic surgery in direct comparison to several other dynamic content descriptors. We show that the MIDD descriptor significantly outperforms the state-of-the-art in terms of retrieval performance as well as in terms of runtime performance. Additionally, we release the manually created video dataset of 16 classes of surgical actions from medical laparoscopy to the public, for further evaluations
The Methylazoxymethanol Acetate (MAM-E17) Rat Model: Molecular and Functional Effects in the Hippocampus
Administration of the DNA-alkylating agent methylazoxymethanol acetate (MAM) on embryonic day 17 (E17) produces behavioral and anatomical brain abnormalities, which model some aspects of schizophrenia. This has lead to the premise that MAM rats are a neurodevelopmental model for schizophrenia. However, the underlying molecular pathways affected in this model have not been elucidated. In this study, we investigated the molecular phenotype of adult MAM rats by focusing on the frontal cortex and hippocampal areas, as these are known to be affected in schizophrenia. Proteomic and metabonomic analyses showed that the MAM treatment on E17 resulted primarily in deficits in hippocampal glutamatergic neurotransmission, as seen in some schizophrenia patients. Most importantly, these results were consistent with our finding of functional deficits in glutamatergic neurotransmission, as identified using electrophysiological recordings. Thus, this study provides the first molecular evidence, combined with functional validation, that the MAM-E17 rat model reproduces hippocampal deficits relevant to the pathology of schizophrenia
