3,088 research outputs found

    Strong Electron Tunneling through a Small Metallic Grain

    Full text link
    Electron tunneling through mesoscopic metallic grains can be treated perturbatively only provided the tunnel junction conductances are sufficiently small. If it is not the case, fluctuations of the grain charge become strong. As a result (i) contributions of all -- including high energy -- charge states become important and (ii) excited charge states become broadened and essentially overlap. At the same time the grain charge remains discrete and the system conductance ee-periodically depends on the gate charge. We develop a nonperturbative approach which accounts for all these features and calculate the temperature dependent conductance of the system in the strong tunneling regime at different values of the gate charge.Comment: revtex, 8 pages, 2 .ps figure

    The Josephson critical current in a long mesoscopic S-N-S junction

    Full text link
    We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions made of a diffusive normal metal (N) embedded between two superconducting electrodes (S). Our experiments are performed on Nb-Cu-Nb junctions with highly-transparent interfaces. We give the predictions of the quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between the short and the long junction regimes and provide the temperature dependence of the critical current using dimensionless units eRNIc/ϵceR_{N}I_{c}/\epsilon_{c} and kBT/ϵck_{B}T/\epsilon_{c} where ϵc\epsilon_{c} is the Thouless energy. Experimental and theoretical results are in excellent quantitative agreement.Comment: 5 pages, 4 figures, slighly modified version, publishe

    Self-aligned charge read-out for InAs nanowire quantum dots

    Full text link
    A highly sensitive charge detector is realized for a quantum dot in an InAs nanowire. We have developed a self-aligned etching process to fabricate in a single step a quantum point contact in a two-dimensional electron gas and a quantum dot in an InAs nanowire. The quantum dot is strongly coupled to the underlying point contact which is used as a charge detector. The addition of one electron to the quantum dot leads to a change of the conductance of the charge detector by typically 20%. The charge sensitivity of the detector is used to measure Coulomb diamonds as well as charging events outside the dot. Charge stability diagrams measured by transport through the quantum dot and charge detection merge perfectly.Comment: 11 pages, 3 figure

    Cooper pairing and finite-size effects in a NJL-type four-fermion model

    Full text link
    Starting from a NJL-type model with N fermion species fermion and difermion condensates and their associated phase structures are considered at nonzero chemical potential μ\mu and zero temperature in spaces with nontrivial topology of the form S1S1S1S^1\otimes S^1\otimes S^1 and R2S1R^2\otimes S^1. Special attention is devoted to the generation of the superconducting phase. In particular, for the cases of antiperiodic and periodic boundary conditions we have found that the critical curve of the phase transitions between the chiral symmetry breaking and superconducting phases as well as the corresponding condensates and particle densities strongly oscillate vs λ1/L\lambda\sim 1/L, where LL is the length of the circumference S1S^1. Moreover, it is shown that at some finite values of LL the superconducting phase transition is shifted to smaller values both of μ\mu and particle density in comparison with the case of L=L=\infty.Comment: 13 pages, 13 figures; minor changes; new references added; version accepted to PR

    New quantum phases in a one-dimensional Josephson array

    Full text link
    We examine the phase diagram of an ordered one-dimensional Josephson array of small grains. The average grain charge in such a system can be tuned by means of gate voltage. At small grain-to-grain conductance, this system is strongly correlated because of the charge discreteness constraint (Coulomb blockade). At the gate voltages in the vicinity of the charge degeneracy points, we find new phases equivalent to a commensurate charge density wave and to a repulsive Luttinger liquid. The existence of these phases can be probed through a special dependence of the Josephson current on the gate voltage.Comment: 4 pages, including 1 eps figur

    Fracton pairing mechanism for "strange" superconductors: Self-assembling organic polymers and copper-oxide compounds

    Full text link
    Self-assembling organic polymers and copper-oxide compounds are two classes of "strange" superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen, Cooper, and Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical model that accounts for the strange superconducting properties of either class of the materials. These properties are considered as interconnected manifestations of the same phenomenon: We argue that superconductivity occurs in the both cases because the charge carriers (i.e., electrons or holes) exchange {\it fracton excitations}, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the strange superconductors. For the copper oxides, the superconducting transition temperature TcT_c as predicted by the fracton mechanism is of the order of 150\sim 150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate-induced superconducting phase in the electron-doped polymers, we simultaneously find a rather modest transition temperature of (23)\sim (2-3) K owing to the limitations imposed by the electron tunneling processes on a fractal geometry. We speculate that hole-type superconductivity observes larger onset temperatures when compared to its electron-type counterpart. This promises an intriguing possibility of the high-temperature superconducting states in hole-doped complex materials. A specific prediction of the present study is universality of ac conduction for TTcT\gtrsim T_c.Comment: 12 pages (including separate abstract page), no figure

    Enriching the values of micro and small business research projects: co-creation service provision as perceived by academic, business and student

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in Studies in Higher Education, first published online 3 September 2014, available online: http://www.tandfonline.com/doi/full/10.1080/03075079.2014.942273.The National Committee of Inquiry into Higher Education (1996) chaired by Lord Dearing envisioned a university sector central to the UK’s knowledge-based economy. With successive government support the university-business partnership ideology has been put into practice. Widening participation has increased in emphasis over recent years, providing key innovations and skills to support business growth. Yet business schools activities in business growth is marginal against other university schools. The paper reports on an empirical study analyzing the university/business values derived from one small business engagement project. Data collected through semi-structured interviews, observations, memos, and discussions were coupled with critical evaluation of work and action-based learning (ABL) literature. Analysis reveals evidence of multiple value adding factors; it emerged that the existence of knowledge, present or generated through blended learning techniques, was a key value adding element. The findings enabled the construction of a universal process model providing a project framework, detailing areas of collaborative efforts and associated recompenses; this included ease in project advancements and a noticeably advanced project outcome. The study highlights these values in terms of individual and organizational learning, originality and quality of outputs. Given the growing importance of Small to Medium-sized Enterprises (SMEs) to the UK economy, understanding the value co-created by collaborative projects in delivering both work-based and ABL for graduates/students, academics and enterprise management is important.Peer reviewedFinal Accepted Versio

    Outdoor learning spaces: the case of forest school

    Get PDF
    © 2017 The Author. Area published by John Wiley & Sons Ltd on behalf of Royal Geographical Society (with the Institute of British Geographers). This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.This paper contributes to the growing body of research concerning use of outdoor spaces by educators, and the increased use of informal and outdoor learning spaces when teaching primary school children. The research takes the example of forest school, a form of regular and repeated outdoor learning increasingly common in primary schools. This research focuses on how the learning space at forest school shapes the experience of children and forest school leaders as they engage in learning outside the classroom. The learning space is considered as a physical space, and also in a more metaphorical way as a space where different behaviours are permitted, and a space set apart from the national curriculum. Through semi-structured interviews with members of the community of practice of forest school leaders, the paper seeks to determine the significance of being outdoors on the forest school experience. How does this learning space differ from the classroom environment? What aspects of the forest school learning space support pupils’ experiences? How does the outdoor learning space affect teaching, and the dynamics of learning while at forest school? The research shows that the outdoor space provides new opportunities for children and teachers to interact and learn, and revealed how forest school leaders and children co-create a learning environment in which the boundaries between classroom and outdoor learning, teacher and pupil, are renegotiated to stimulate teaching and learning. Forest school practitioners see forest school as a separate learning space that is removed from the physical constraints of the classroom and pedagogical constraints of the national curriculum to provide a more flexible and responsive learning environment.Peer reviewe

    'Simultaneous Immersion' : How online postgraduate study contributes to the development of reflective practice among public service practitioners

    Get PDF
    This paper examines how the process of engaging simultaneously in study and work – through online distance-based study – affects students’ capacity to apply their learning in and for the workplace. The paper takes as its starting point the importance of extending notions of “educational effectiveness” beyond course-based attainment to encompass the impact of learning within the workplace. It explores the interface between study and work, focusing on the case of online postgraduate programmes in public management at the University of York. It finds that simultaneous immersion in study and work can create the conditions for “public reflection” that underpin work-based learning and that a key factor is the student-practitioner's ability to mobilise “episodic power.” The paper suggests ways in which existing approaches to online postgraduate learning might be enhanced in order to capitalise on these conditions of simultaneous immersion

    Effects of C, Cu and Be substitutions in superconducting MgB2

    Full text link
    Density functional calculations are used to investigate the effects of partial substitutional alloying of the B site in MgB2 with C and Be alone and combined with alloying of the Mg site with Cu. The effect of such substitutions on the electronic structure, electron phonon coupling and superconductivity are discussed. We find that Be substitution for B is unfavorable for superconductivity as it leads to a softer lattice and weaker electron-phonon couplings. Replacement of Mg by Cu leads to an increase in the stiffness and doping level at the same time, while the carrier concentration can be controlled by partial replacement of B by C. We estimate that with full replacement of Mg by Cu and fractional substitution of B by C, Tc values of 50K may be attainable.Comment: 5 pages, 4 figure
    corecore