15,582 research outputs found
A statistical mechanics model for free-for-all airplane passenger boarding
I present and discuss a model for the free-for-all passenger boarding which
is employed by some discount air carriers. The model is based on the principles
of statistical mechanics where each seat in the aircraft has an associated
energy which reflects the preferences of the population of air travelers. As
each passenger enters the airplane they select their seats using Boltzmann
statistics, proceed to that location, load their luggage, sit down, and the
partition function seen by remaining passengers is modified to reflect this
fact. I discuss the various model parameters and make qualitative comparisons
of this passenger boarding model with models which involve assigned seats. This
model can also be used to predict the probability that certain seats will be
occupied at different times during the boarding process. These results may be
of value to industry professionals as a useful description of this boarding
method. However, it also has significant value as a pedagogical tool since it
is a relatively unusual application of undergraduate level physics and it
describes a situation with which many students and faculty may be familiar.Comment: version 1: 4 pages 2 figures version 2: 7 pages with 5 figure
Noninteracting Fermions in infinite dimensions
Usually, we study the statistical behaviours of noninteracting Fermions in
finite (mainly two and three) dimensions. For a fixed number of fermions, the
average energy per fermion is calculated in two and in three dimensions and it
becomes equal to 50 and 60 per cent of the fermi energy respectively. However,
in the higher dimensions this percentage increases as the dimensionality
increases and in infinite dimensions it becomes 100 per cent. This is an
intersting result, at least pedagogically. Which implies all fermions are
moving with Fermi momentum. This result is not yet discussed in standard text
books of quantum statistics. In this paper, this fact is discussed and
explained. I hope, this article will be helpful for graduate students to study
the behaviours of free fermions in generalised dimensionality.Comment: To appear in European Journal of Physics (2010
Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation
The hydrophobic effect stabilizes the native structure of proteins by
minimizing the unfavourable interactions between hydrophobic residues and water
through the formation of a hydrophobic core. Here we include the entropic and
enthalpic contributions of the hydrophobic effect explicitly in an implicit
solvent model. This allows us to capture two important effects: a length-scale
dependence and a temperature dependence for the solvation of a hydrophobic
particle. This consistent treatment of the hydrophobic effect explains cold
denaturation and heat capacity measurements of solvated proteins.Comment: Added and corrected references for design procedure in main text (p.
2) and in Supplemental Information (p. 8
Neurogenic Fever after Acute Traumatic Spinal Cord Injury: A Qualitative Systematic Review.
STUDY DESIGN: Systematic review.
OBJECTIVE: To determine the incidence, pathogenesis, and clinical outcomes related to neurogenic fevers following traumatic spinal cord injury (SCI).
METHODS: A systematic review of the literature was performed on thermodysregulation secondary to acute traumatic SCI in adult patients. A literature search was performed using PubMed (MEDLINE), Cochrane Central Register of Controlled Trials, and Scopus. Using strict inclusion and exclusion criteria, seven relevant articles were obtained.
RESULTS: The incidence of fever of all origins (both known and unknown) after SCI ranged from 22.5 to 71.7% with a mean incidence of 50.6% and a median incidence of 50.0%. The incidence of fever of unknown origin (neurogenic fever) ranged from 2.6 to 27.8% with a mean incidence of 8.0% and a median incidence of 4.7%. Cervical and thoracic spinal injuries were more commonly associated with fever than lumbar injuries. In addition, complete injuries had a higher incidence of fever than incomplete injuries. The pathogenesis of neurogenic fever after acute SCI is not thoroughly understood.
CONCLUSION: Neurogenic fevers are relatively common following an acute SCI; however, there is little in the scientific literature to help physicians prevent or treat this condition. The paucity of research underscored by this review demonstrates the need for further studies with larger sample sizes, focusing on incidence rate, clinical outcomes, and pathogenesis of neurogenic fever following acute traumatic SCI
Two-mirror Schwarzschild aplanats. Basic relations
It is shown that the theory of aplanatic two-mirror telescopes developed by
Karl Schwarzschild in 1905 leads to the unified description both the prefocal
and the postfocal systems. The class of surfaces in the ZEMAX optical program
has been properly extended to ascertain the image quality in exact
Schwarzschild aplanats. A comparison of Schwarzschild aplanats with approximate
Ritchey-Chretien and Gregory-Maksutov aplanatic telescopes reveals a noticeable
advantage of the former at fast focal ratio of the system.Comment: 19 page
A purely reflective large wide-field telescope
Two versions of a fast, purely reflective Paul-Baker type telescope are
discussed, each with an 8.4-m aperture, 3 deg diameter flat field and f/1.25
focal ratio.
The first version is based on a common, even asphere type of surface with
zero conic constant. The primary and tertiary mirrors are 6th order aspheres,
while the secondary mirror is an 8th order asphere (referred to here for
brevity, as the 6/8/6 configuration). The D_80 diameter of a star image varies
from 0''.18 on the optical axis up to 0''.27 at the edge of the field (9.3-13.5
mcm).
The second version of the telescope is based on a polysag surface type which
uses a polynomial expansion in the sag z, r^2 = 2R_0z - (1+b)z^2 + a_3 z^3 +
a_4 z^4 + ... + a_N z^N, instead of the common form of an aspheric surface.
This approach results in somewhat better images, with D_80 ranging from 0''.16
to 0''.23, using a lower-order 3/4/3 combination of powers for the mirror
surfaces. An additional example with 3.5-m aperture, 3.5 deg diameter flat
field, and f/1.25 focal ratio featuring near-diffraction-limited image quality
is also presented.Comment: 14 pages, 6 figures; new examples adde
Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy
The laser driven acceleration of ions is considered a promising candidate for
an ion source for hadron therapy of oncological diseases. Though proton and
carbon ion sources are conventionally used for therapy, other light ions can
also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the
same penetration depth as 250 MeV protons, helium ions require only 250 MeV per
nucleon, which is the lowest energy per nucleon among the light ions. This fact
along with the larger biological damage to cancer cells achieved by helium
ions, than that by protons, makes this species an interesting candidate for the
laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and
hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion
acceleration from liquid and gaseous helium targets are studied with the goal
of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy
requirements. We show that He3 ions, having almost the same penetration depth
as He4 with the same energy per nucleon, require less laser power to be
accelerated to the required energy for the hadron therapy.Comment: 8 pages, 3 figures, 1 tabl
Making Sense of the Legendre Transform
The Legendre transform is an important tool in theoretical physics, playing a
critical role in classical mechanics, statistical mechanics, and
thermodynamics. Yet, in typical undergraduate or graduate courses, the power of
motivation and elegance of the method are often missing, unlike the treatments
frequently enjoyed by Fourier transforms. We review and modify the presentation
of Legendre transforms in a way that explicates the formal mathematics,
resulting in manifestly symmetric equations, thereby clarifying the structure
of the transform algebraically and geometrically. Then we bring in the physics
to motivate the transform as a way of choosing independent variables that are
more easily controlled. We demonstrate how the Legendre transform arises
naturally from statistical mechanics and show how the use of dimensionless
thermodynamic potentials leads to more natural and symmetric relations.Comment: 11 pages, 3 figure
Mutational Analysis of the Rotavirus NSP4 Enterotoxic Domain that Binds to Caveolin-1
Background: Rotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction.
Methods: A panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study.
Results: Mutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112 −140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea.
Conclusions: These data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities
- …
