13,264 research outputs found

    Unrecognized Backscattering in Low Energy Beta Spectroscopy

    Full text link
    We present studies on electron backscattering from the surface of plastic scintillator beta detectors. By using a setup of two detectors coaxial with a strong external magnetic field - one detector serving as primary detector, the other as veto-detector to detect backscattering - we investigate amount and spectrum of unrecognized backscattering, i.e. events where only one detector recorded a trigger signal. The implications are important for low energy particle physics experiments.Comment: 5 pages, 8 figures; v2: published NIM A versio

    Spatially Dependent Parameter Estimation and Nonlinear Data Assimilation by Autosynchronization of a System of Partial Differential Equations

    Full text link
    Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a PDE model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modelling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing is discussed

    Understanding Jet Scaling and Jet Vetos in Higgs Searches

    Full text link
    Jet counting and jet vetos are crucial analysis tools for many LHC searches. We can understand their properties from the distribution of the exclusive number of jets. LHC processes tend to show either a distinct staircase scaling or a Poisson scaling, depending on kinematic cuts. We illustrate our approach in a detailed study of jets in weak boson fusion Higgs production.Comment: 5 pages, 4 figures, 1 table. Text clarified to reflect that we applied forward-backward tagging jet selectio

    Vacuum structure of a modified MIT Bag

    Full text link
    An alternative to introducing and subsequently renormalizing classical parameters in the expression for the vacuum energy of the MIT bag for quarks is proposed in the massless case by appealing to the QCD trace anomaly and scale separation due to asymptotic freedom. The explicit inclusion of gluons implies an unrealistically low separation scale.Comment: 5 pages, 2 figure

    Optimization of electron microscopy for human brains with long-term fixation and fixed-frozen sections.

    Get PDF
    BackgroundAbnormal connectivity across brain regions underlies many neurological disorders including multiple sclerosis, schizophrenia and autism, possibly due to atypical axonal organization within white matter. Attempts at investigating axonal organization on post-mortem human brains have been hindered by the availability of high-quality, morphologically preserved tissue, particularly for neurodevelopmental disorders such as autism. Brains are generally stored in a fixative for long periods of time (often greater than 10 years) and in many cases, already frozen and sectioned on a microtome for histology and immunohistochemistry. Here we present a method to assess the quality and quantity of axons from long-term fixed and frozen-sectioned human brain samples to demonstrate their use for electron microscopy (EM) measures of axonal ultrastructure.ResultsSix samples were collected from white matter below the superior temporal cortex of three typically developing human brains and prepared for EM analyses. Five samples were stored in fixative for over 10 years, two of which were also flash frozen and sectioned on a freezing microtome, and one additional case was fixed for 3 years and sectioned on a freezing microtome. In all six samples, ultrastructural qualitative and quantitative analyses demonstrate that myelinated axons can be identified and counted on the EM images. Although axon density differed between brains, axonal ultrastructure and density was well preserved and did not differ within cases for fixed and frozen tissue. There was no significant difference between cases in axon myelin sheath thickness (g-ratio) or axon diameter; approximately 70% of axons were in the small (0.25 μm) to medium (0.75 μm) range. Axon diameter and g-ratio were positively correlated, indicating that larger axons may have thinner myelin sheaths.ConclusionThe current study demonstrates that long term formalin fixed and frozen-sectioned human brain tissue can be used for ultrastructural analyses. Axon integrity is well preserved and can be quantified using the methods presented here. The ability to carry out EM on frozen sections allows for investigation of axonal organization in conjunction with other cellular and histological methods, such as immunohistochemistry and stereology, within the same brain and even within the same frozen cut section

    Bounds on Lorentz and CPT Violation from the Earth-Ionosphere Cavity

    Full text link
    Electromagnetic resonant cavities form the basis of many tests of Lorentz invariance involving photons. The effects of some forms of Lorentz violation scale with cavity size. We investigate possible signals of violations in the naturally occurring resonances formed in the Earth-ionosphere cavity. Comparison with observed resonances places the first terrestrial constraints on coefficients associated with dimension-three Lorentz-violating operators at the level of 10^{-20} GeV.Comment: 8 pages REVTe

    Automation of NLO QCD and EW corrections with Sherpa and Recola

    Get PDF
    This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa+Recola framework allows for the computation of -in principle- any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy.Comment: 38 pages, 29 figures. Matches the published version (few typos corrected

    Calculation of the Regularized Vacuum Energy in Cavity Field Theories

    Get PDF
    A novel technique based on Schwinger's proper time method is applied to the Casimir problem of the M.I.T. bag model. Calculations of the regularized vacuum energies of massless scalar and Dirac spinor fields confined to a static and spherical cavity are presented in a consistent manner. While our results agree partly with previous calculations based on asymptotic methods, the main advantage of our technique is that the numerical errors are under control. Interpreting the bag constant as a vacuum expectation value, we investigate potential cancellations of boundary divergences between the canonical energy and its bag constant counterpart in the fermionic case. It is found that such cancellations do not occur.Comment: 14 pages, 4 figures, accepted for publication in Eur.Phys.J.

    Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders.

    Get PDF
    BackgroundAutism spectrum disorders (ASDs) likely involve dysregulation of multiple genes related to brain function and development. Abnormalities in individual regulatory small non-coding RNA (sncRNA), including microRNA (miRNA), could have profound effects upon multiple functional pathways. We assessed whether a brain region associated with core social impairments in ASD, the superior temporal sulcus (STS), would evidence greater transcriptional dysregulation of sncRNA than adjacent, yet functionally distinct, primary auditory cortex (PAC).MethodsWe measured sncRNA expression levels in 34 samples of postmortem brain from STS and PAC to find differentially expressed sncRNA in ASD compared with control cases. For differentially expressed miRNA, we further analyzed their predicted mRNA targets and carried out functional over-representation analysis of KEGG pathways to examine their functional significance and to compare our findings to reported alterations in ASD gene expression.ResultsTwo mature miRNAs (miR-4753-5p and miR-1) were differentially expressed in ASD relative to control in STS and four (miR-664-3p, miR-4709-3p, miR-4742-3p, and miR-297) in PAC. In both regions, miRNA were functionally related to various nervous system, cell cycle, and canonical signaling pathways, including PI3K-Akt signaling, previously implicated in ASD. Immune pathways were only disrupted in STS. snoRNA and pre-miRNA were also differentially expressed in ASD brain.ConclusionsAlterations in sncRNA may underlie dysregulation of molecular pathways implicated in autism. sncRNA transcriptional abnormalities in ASD were apparent in STS and in PAC, a brain region not directly associated with core behavioral impairments. Disruption of miRNA in immune pathways, frequently implicated in ASD, was unique to STS

    Iron single crystal growth from a lithium-rich melt

    Get PDF
    \alpha-Fe single crystals of rhombic dodecahedral habit were grown from a melt of Li84_{84}N12_{12}Fe3_{\sim 3}. Crystals of several millimeter along a side form at temperatures around T800T \approx 800^\circC. Upon further cooling the growth competes with the formation of Fe-doped Li3_3N. The b.c.c. structure and good sample quality of \alpha-Fe single crystals were confirmed by X-ray and electron diffraction as well as magnetization measurements and chemical analysis. A nitrogen concentration of 90\,ppm was detected by means of carrier gas hot extraction. Scanning electron microscopy did not reveal any sign of iron nitride precipitates.Comment: 13 pages, 4 figure
    corecore