786 research outputs found
Interpreting experimental bounds on D^0 - \bar{D^0} mixing in the presence of CP violation
We analyse the most recent experimental data regarding D^0 - \bar{D^0}
mixing, allowing for CP violation. We focus on the dispersive part of the
mixing amplitude, M^D_{12}, which is sensitive to new physics contributions. We
obtain a constraint on the mixing amplitude: |M^D_{12}| < 6.2\times 10^{-11}
MeV at 95% C.L. . This constraint is weaker by a factor of about three than the
one which is obtained when no CP violation is assumed.Comment: 9 pages, revtex4; One reference updated, one reference added,
footnote 3 correcte
Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in 4-\epsilon dimensions
The large distance behaviors of the random field and random anisotropy O(N)
models are studied with the functional renormalization group in 4-\epsilon
dimensions. The random anisotropy Heisenberg (N=3) model is found to have a
phase with the infinite correlation radius at low temperatures and weak
disorder. The correlation function of the magnetization obeys a power law <
m(x) m(y) >\sim |x-y|^{-0.62\epsilon}. The magnetic susceptibility diverges at
low fields as \chi \sim H^{-1+0.15\epsilon}. In the random field O(N) model the
correlation radius is found to be finite at the arbitrarily weak disorder for
any N>3. The random field case is studied with a new simple method, based on a
rigorous inequality. This approach allows one to avoid the integration of the
functional renormalization group equations.Comment: 12 pages, RevTeX; a minor change in the list of reference
Hard Instances of the Constrained Discrete Logarithm Problem
The discrete logarithm problem (DLP) generalizes to the constrained DLP,
where the secret exponent belongs to a set known to the attacker. The
complexity of generic algorithms for solving the constrained DLP depends on the
choice of the set. Motivated by cryptographic applications, we study sets with
succinct representation for which the constrained DLP is hard. We draw on
earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such
as generalized Menelaus' theorem for proving lower bounds on the complexity of
the constrained DLP, and construct sets with succinct representation with
provable non-trivial lower bounds
The wave equation on singular space-times
We prove local unique solvability of the wave equation for a large class of
weakly singular, locally bounded space-time metrics in a suitable space of
generalised functions.Comment: Latex, 19 pages, 1 figure. Discussion of class of metrics covered by
our results and some examples added. Conclusion more detailed. Version to
appear in Communications in Mathematical Physic
Rare charm meson decays D->Pl^+l^- and c->ul^+l^- in SM and MSSM
We study the nine possible rare charm meson decays D->Pl^+l^-
(P=pi,K,eta,eta') using the Heavy Meson Chiral Lagrangians and find them to be
dominated by the long distance contributions. The decay D^+ -> pi^+l^+l^- with
the branching ratio 1*10^(-6) is expected to have the best chances for an early
experimental discovery. The short distance contribution in the five Cabibbo
suppressed channels arises via the c->ul^+l^- transition; we find that this
contribution is detectable only in the D->pi l^+l^- decay, where it dominates
the differential spectrum at high-q^2. The general Minimal Supersymmetric
Standard Model can enhance the c->ul^+l^- rate by up to an order of magnitude;
its effect on the D->Pl^+l^- rates is small since the c->ul^+l^- enhancement is
sizable in low-q^2 region, which is inhibited in the hadronic decay.Comment: 17 page
Extragalactic jets on subpc and large scales
Jets can be probed in their innermost regions (d~0.1 pc) through the study of
the relativistically-boosted emission of blazars. On the other extreme of
spatial scales, the study of structure and dynamics of extragalactic
relativistic jets received renewed impulse after the discovery, made by
Chandra, of bright X-ray emission from regions at distances larger than
hundreds of kpc from the central engine. At both scales it is thus possible to
infer some of the basic parameters of the flow (speed, density, magnetic field
intensity, power). After a brief review of the available observational
evidence, I discuss how the comparison between the physical quantities
independently derived at the two scales can be used to shed light on the global
dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets -
from Planets to Quasars. Accepted, to be published in Astrophysics & Space
Scienc
Measurement of branching fraction ratios and CP asymmetries in
We report results on the decay and its charge
conjugate using a data sample of 85.4 million pairs recorded at the
resonance with the Belle detector at the KEKB asymmetric
storage ring. Ratios of branching fractions of Cabibbo-suppressed
to Cabibbo-favored processes are determined to be , and where the indices 1 and 2 represent the CP=+1
and CP=1 eigenstates of the system, respectively. We
find the partial-rate charge asymmetries for to be
and .Comment: 10 pages, 3 figures, submitted to Physical Review
Making things happen : a model of proactive motivation
Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within one’s work environment, improving the organization’s internal functioning, or enhancing the organization’s strategic fit with its environment) and whether the self or situation is being changed. The authors then identify “can do,” “reason to,” and “energized to” motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
- …
