2,785 research outputs found
Monitoring Partially Synchronous Distributed Systems using SMT Solvers
In this paper, we discuss the feasibility of monitoring partially synchronous
distributed systems to detect latent bugs, i.e., errors caused by concurrency
and race conditions among concurrent processes. We present a monitoring
framework where we model both system constraints and latent bugs as
Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of
latent bugs using an SMT solver. We demonstrate the feasibility of our
framework using both synthetic applications where latent bugs occur at any time
with random probability and an application involving exclusive access to a
shared resource with a subtle timing bug. We illustrate how the time required
for verification is affected by parameters such as communication frequency,
latency, and clock skew. Our results show that our framework can be used for
real-life applications, and because our framework uses SMT solvers, the range
of appropriate applications will increase as these solvers become more
efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime
Verification (RV) 201
Fermions and Type IIB Supergravity On Squashed Sasaki-Einstein Manifolds
We discuss the dimensional reduction of fermionic modes in a recently found
class of consistent truncations of type IIB supergravity compactified on
squashed five-dimensional Sasaki-Einstein manifolds. We derive the lower
dimensional equations of motion and effective action, and comment on the
supersymmetry of the resulting theory, which is consistent with N=4 gauged
supergravity in , coupled to two vector multiplets. We compute fermion
masses by linearizing around two vacua of the theory: one that breaks
N=4 down to N=2 spontaneously, and a second one which preserves no
supersymmetries. The truncations under consideration are noteworthy in that
they retain massive modes which are charged under a U(1) subgroup of the
-symmetry, a feature that makes them interesting for applications to
condensed matter phenomena via gauge/gravity duality. In this light, as an
application of our general results we exhibit the coupling of the fermions to
the type IIB holographic superconductor, and find a consistent further
truncation of the fermion sector that retains a single spin-1/2 mode.Comment: 43 pages, 2 figures, PDFLaTeX; v2: added references, typos corrected,
minor change
Boundary Conditions and Unitarity: the Maxwell-Chern-Simons System in AdS_3/CFT_2
We consider the holography of the Abelian Maxwell-Chern-Simons (MCS) system
in Lorentzian three-dimensional asymptotically-AdS spacetimes, and discuss a
broad class of boundary conditions consistent with conservation of the
symplectic structure. As is well-known, the MCS theory contains a massive
sector dual to a vector operator in the boundary theory, and a topological
sector consisting of flat connections dual to U(1) chiral currents; the
boundary conditions we examine include double-trace deformations in these two
sectors, as well as a class of boundary conditions that mix the vector
operators with the chiral currents. We carefully study the symplectic product
of bulk modes and show that almost all such boundary conditions induce
instabilities and/or ghost excitations, consistent with violations of unitarity
bounds in the dual theory.Comment: 50+1 pages, 6 figures, PDFLaTeX; v2: added references, corrected
typo
Rigidity of SU(2,2|2)-symmetric solutions in Type IIB
We investigate the existence of half-BPS solutions in Type IIB supergravity
which are invariant under the superalgebra SU(2,2|2) realized on either AdS_5 x
S^2 x S^1 or AdS_5 x S^3 warped over a Riemann surface \Sigma with boundary. We
prove that, in both cases, the only solution is AdS_5 x S^5 itself. We argue
that this result provides evidence for the non-existence of fully back-reacted
intersecting D3/D7 branes with either AdS_5 x S^2 x S^1 x \Sigma or AdS_5 x S^3
x \Sigma near-horizon limits.Comment: 55 page
d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories
We study three dimensional O(N)_k and U(N)_k Chern-Simons theories coupled to
a scalar field in the fundamental representation, in the large N limit. For
infinite k this is just the singlet sector of the O(N) (U(N)) vector model,
which is conjectured to be dual to Vasiliev's higher spin gravity theory on
AdS_4. For large k and N we obtain a parity-breaking deformation of this
theory, controlled by the 't Hooft coupling lambda = 4 \pi N / k. For infinite
N we argue (and show explicitly at two-loop order) that the theories with
finite lambda are conformally invariant, and also have an exactly marginal
(\phi^2)^3 deformation.
For large but finite N and small 't Hooft coupling lambda, we show that there
is still a line of fixed points parameterized by the 't Hooft coupling lambda.
We show that, at infinite N, the interacting non-parity-invariant theory with
finite lambda has the same spectrum of primary operators as the free theory,
consisting of an infinite tower of conserved higher-spin currents and a scalar
operator with scaling dimension \Delta=1; however, the correlation functions of
these operators do depend on lambda. Our results suggest that there should
exist a family of higher spin gravity theories, parameterized by lambda, and
continuously connected to Vasiliev's theory. For finite N the higher spin
currents are not conserved.Comment: 34 pages, 29 figures. v2: added reference
On thermodynamics of N=6 superconformal Chern-Simons theory
We study thermodynamics of N=6 superconformal Chern-Simons theory by
computing quantum corrections to the free energy. We find that in weakly
coupled ABJM theory on R(2) x S(1), the leading correction is non-analytic in
the 't Hooft coupling lambda, and is approximately of order lambda^2
log(lambda)^3. The free energy is expressed in terms of the scalar thermal mass
m, which is generated by screening effects. We show that this mass vanishes to
1-loop order. We then go on to 2-loop order where we find a finite and positive
mass squared m^2. We discuss differences in the calculation between Coulomb and
Lorentz gauge. Our results indicate that the free energy is a monotonic
function in lambda which interpolates smoothly to the N^(3/2) behaviour at
strong coupling.Comment: 29 pages. v2: references added. v3: minor changes, references added,
published versio
Semiclassical Analysis of M2-brane in AdS_4 x S^7 / Z_k
We start from the classical action describing a single M2-brane on AdS_4 x
S^7/ Z_k and consider semiclassical fluctuaitions around a static, 1/2 BPS
configuration whose shape is AdS_2 x S^1. The internal manifold S^7/ Z_k is
described as a U(1) fibration over CP^3 and the static configuration is wrapped
on the U(1) fiber. Then the configuration is reduced to an AdS_2 world-sheet of
type IIA string on AdS_4 x CP^3 through the Kaluza-Klein reduction on the S^1.
It is shown that the fluctuations form an infinite set of N=1 supermultiplets
on AdS_2, for k=1,2. The set is invariant under SO(8) which may be consistent
with N=8 supersymmetry on AdS_2. We discuss the behavior of the fluctuations
around the boundary of AdS_2 and its relation to deformations of Wilson loop
operator.Comment: 27 pages, v2: references added, v3: major revision including the
clarification of k=2 case, references added, version to appear in JHE
A No-Go Theorem for M5-brane Theory
The BLG model for multiple M2-branes motivates an M5-brane theory with a
novel gauge symmetry defined by the Nambu-Poisson structure. This Nambu-Poisson
gauge symmetry for an M5-brane in large C-field background can be matched, on
double dimension reduction, with the Poisson limit of the noncommutative gauge
symmetry for a D4-brane in B-field background. Naively, one expects that there
should exist a certain deformation of the Nambu-Poisson structure to match with
the full noncommutative gauge symmetry including higher order terms. However,
We prove the no-go theorem that there is no way to deform the Nambu-Poisson
gauge symmetry, even without assuming the existence of a deformation of
Nambu-Poisson bracket, to match with the noncommutative gauge symmetry in 4+1
dimensions to all order, regardless of how the double dimension reduction is
implemented.Comment: v4: minor modifications
Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant
We show that the ABJM theory, which is an N=6 superconformal U(N)*U(N)
Chern-Simons gauge theory, can be studied for arbitrary N at arbitrary coupling
constant by applying a simple Monte Carlo method to the matrix model that can
be derived from the theory by using the localization technique. This opens up
the possibility of probing the quantum aspects of M-theory and testing the
AdS_4/CFT_3 duality at the quantum level. Here we calculate the free energy,
and confirm the N^{3/2} scaling in the M-theory limit predicted from the
gravity side. We also find that our results nicely interpolate the analytical
formulae proposed previously in the M-theory and type IIA regimes. Furthermore,
we show that some results obtained by the Fermi gas approach can be clearly
understood from the constant map contribution obtained by the genus expansion.
The method can be easily generalized to the calculations of BPS operators and
to other theories that reduce to matrix models.Comment: 35 pages, 20 figures; reference added. The simulation code is
available upon request to [email protected]
The identification of informative genes from multiple datasets with increasing complexity
Background
In microarray data analysis, factors such as data quality, biological variation, and the increasingly multi-layered nature of more complex biological systems complicates the modelling of regulatory networks that can represent and capture the interactions among genes. We believe that the use of multiple datasets derived from related biological systems leads to more robust models. Therefore, we developed a novel framework for modelling regulatory networks that involves training and evaluation on independent datasets. Our approach includes the following steps: (1) ordering the datasets based on their level of noise and informativeness; (2) selection of a Bayesian classifier with an appropriate level of complexity by evaluation of predictive performance on independent data sets; (3) comparing the different gene selections and the influence of increasing the model complexity; (4) functional analysis of the informative genes.
Results
In this paper, we identify the most appropriate model complexity using cross-validation and independent test set validation for predicting gene expression in three published datasets related to myogenesis and muscle differentiation. Furthermore, we demonstrate that models trained on simpler datasets can be used to identify interactions among genes and select the most informative. We also show that these models can explain the myogenesis-related genes (genes of interest) significantly better than others (P < 0.004) since the improvement in their rankings is much more pronounced. Finally, after further evaluating our results on synthetic datasets, we show that our approach outperforms a concordance method by Lai et al. in identifying informative genes from multiple datasets with increasing complexity whilst additionally modelling the interaction between genes.
Conclusions
We show that Bayesian networks derived from simpler controlled systems have better performance than those trained on datasets from more complex biological systems. Further, we present that highly predictive and consistent genes, from the pool of differentially expressed genes, across independent datasets are more likely to be fundamentally involved in the biological process under study. We conclude that networks trained on simpler controlled systems, such as in vitro experiments, can be used to model and capture interactions among genes in more complex datasets, such as in vivo experiments, where these interactions would otherwise be concealed by a multitude of other ongoing events
- …
