1,397 research outputs found
Phenotypic evolution studied by layered stochastic differential equations
Time series of cell size evolution in unicellular marine algae (division
Haptophyta; Coccolithus lineage), covering 57 million years, are studied by a
system of linear stochastic differential equations of hierarchical structure.
The data consists of size measurements of fossilized calcite platelets
(coccoliths) that cover the living cell, found in deep-sea sediment cores from
six sites in the world oceans and dated to irregular points in time. To
accommodate biological theory of populations tracking their fitness optima, and
to allow potentially interpretable correlations in time and space, the model
framework allows for an upper layer of partially observed site-specific
population means, a layer of site-specific theoretical fitness optima and a
bottom layer representing environmental and ecological processes. While the
modeled process has many components, it is Gaussian and analytically tractable.
A total of 710 model specifications within this framework are compared and
inference is drawn with respect to model structure, evolutionary speed and the
effect of global temperature.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS559 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Handelnd Lernen : Situationsaufgaben als Ausgangspunkt berufsschulischen Unterrichts und universitäter Lehrerbildung
From open-access to individual quotas: Disentangling the effects of policy reform and environmental changes in the Norwegian coastal cod fishery
Understanding the effect of introducing property rights to natural resources is central in economics, but empirical analysis is frustrated by the complexity of socioecological systems. We construct a detailed bio-economic model of the Norwegian coastal cod fishery, which was closed after 1989, to isolate the effect of environmental variability. We project stock and harvest forward in the counterfactual scenario of no intervention, showing that the policy had only a small positive impact on stock biomass, but a pronounced positive effect on profits. The main driver, uncovered by index-number decomposition, is savings in fuel and labor costs
The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen
BACKGROUND: The facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen utilizes acyclic, monocyclic and bicyclic monoterpenes as sole carbon source under oxic as well as anoxic conditions. A biotransformation pathway of the acyclic β-myrcene required linalool dehydratase-isomerase as initial enzyme acting on the hydrocarbon. An in-frame deletion mutant did not use myrcene, but was able to grow on monocyclic monoterpenes. The genome sequence and a comparative proteome analysis together with a random transposon mutagenesis were conducted to identify genes involved in the monocyclic monoterpene metabolism. Metabolites accumulating in cultures of transposon and in-frame deletion mutants disclosed the degradation pathway. RESULTS: Castellaniella defragrans 65Phen oxidizes the monocyclic monoterpene limonene at the primary methyl group forming perillyl alcohol. The genome of 3.95 Mb contained a 70 kb genome island coding for over 50 proteins involved in the monoterpene metabolism. This island showed higher homology to genes of another monoterpene-mineralizing betaproteobacterium, Thauera terpenica 58Eu(T), than to genomes of the family Alcaligenaceae, which harbors the genus Castellaniella. A collection of 72 transposon mutants unable to grow on limonene contained 17 inactivated genes, with 46 mutants located in the two genes ctmAB (cyclic terpene metabolism). CtmA and ctmB were annotated as FAD-dependent oxidoreductases and clustered together with ctmE, a 2Fe-2S ferredoxin gene, and ctmF, coding for a NADH:ferredoxin oxidoreductase. Transposon mutants of ctmA, B or E did not grow aerobically or anaerobically on limonene, but on perillyl alcohol. The next steps in the pathway are catalyzed by the geraniol dehydrogenase GeoA and the geranial dehydrogenase GeoB, yielding perillic acid. Two transposon mutants had inactivated genes of the monoterpene ring cleavage (mrc) pathway. 2-Methylcitrate synthase and 2-methylcitrate dehydratase were also essential for the monoterpene metabolism but not for growth on acetate. CONCLUSIONS: The genome of Castellaniella defragrans 65Phen is related to other genomes of Alcaligenaceae, but contains a genomic island with genes of the monoterpene metabolism. Castellaniella defragrans 65Phen degrades limonene via a limonene dehydrogenase and the oxidation of perillyl alcohol. The initial oxidation at the primary methyl group is independent of molecular oxygen
Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors
Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids
Functional analysis of the magnetosome island in Magnetospirillum gryphiswaldense: the mamAB operon is sufficient for magnetite biomineralization
Bacterial magnetosomes are membrane-enveloped, nanometer-sized crystals of magnetite, which serve for magnetotactic navigation. All genes implicated in the synthesis of these organelles are located in a conserved genomic magnetosome island (MAI). We performed a comprehensive bioinformatic, proteomic and genetic analysis of the MAI in Magnetospirillum gryphiswaldense. By the construction of large deletion mutants we demonstrate that the entire region is dispensable for growth, and the majority of MAI genes have no detectable function in magnetosome formation and could be eliminated without any effect. Only <25% of the region comprising four major operons could be associated with magnetite biomineralization, which correlated with high expression of these genes and their conservation among magnetotactic bacteria. Whereas only deletion of the mamAB operon resulted in the complete loss of magnetic particles, deletion of the conserved mms6, mamGFDC, and mamXY operons led to severe defects in morphology, size and organization of magnetite crystals. However, strains in which these operons were eliminated together retained the ability to synthesize small irregular crystallites, and weakly aligned in magnetic fields. This demonstrates that whereas the mamGFDC, mms6 and mamXY operons have crucial and partially overlapping functions for the formation of functional magnetosomes, the mamAB operon is the only region of the MAI, which is necessary and sufficient for magnetite biomineralization. Our data further reduce the known minimal gene set required for magnetosome formation and will be useful for future genome engineering approaches
Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin
The heterologous expression of genes or gene clusters in microbial hosts, followed by metabolic engineering of biosynthetic pathways, is key to access industrially and pharmaceutically relevant compounds in an economically affordable and sustainable manner. Therefore, platforms need to be developed, which provide tools for the controlled synthesis of bioactive compounds. The Gram-positive bacterium Bacillus subtilis is a promising candidate for such applications, as it is generally regarded as a safe production host, its physiology is well investigated and a variety of tools is available for its genetic manipulation. Furthermore, this industrially relevant bacterium provides a high secretory potential not only for enzymes but also for primary and secondary metabolites. In this study, we present the first heterologous expression of an eukaryotic non-ribosomal peptide synthetase gene (esyn) coding for the biosynthesis of the small molecule enniatin in B. subtilis. Enniatin is a pharmaceutically used cyclodepsipeptide for treatment of topical bacterial and fungal infections. We generated various enniatin-producing B. subtilis strains, allowing for either single chromosomal or plasmid-based multi-copy expression of the esyn cluster under the control of an acetoin-inducible promoter system. Optimization of cultivation conditions, combined with modifications of the genetic background and multi-copy plasmid-based esyn expression, resulted in a secretory production of enniatin B. This work presents B. subtilis as a suitable host for the expression of heterologous eukaryotic non-ribosomal peptide synthetases (NRPS) clusters
Graphical models for marked point processes based on local independence
A new class of graphical models capturing the dependence structure of events
that occur in time is proposed. The graphs represent so-called local
independences, meaning that the intensities of certain types of events are
independent of some (but not necessarily all) events in the past. This dynamic
concept of independence is asymmetric, similar to Granger non-causality, so
that the corresponding local independence graphs differ considerably from
classical graphical models. Hence a new notion of graph separation, called
delta-separation, is introduced and implications for the underlying model as
well as for likelihood inference are explored. Benefits regarding facilitation
of reasoning about and understanding of dynamic dependencies as well as
computational simplifications are discussed.Comment: To appear in the Journal of the Royal Statistical Society Series
Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes 'Gramella forsetii' KT0803
Members of the phylum Bacteroidetes are abundant in many marine ecosystems and are known to have a pivotal role in the mineralization of complex organic substrates such as polysaccharides and proteins. We studied the decomposition of the algal glycans laminarin and alginate by 'Gramella forsetii' KT0803, a bacteroidetal isolate from North Sea surface waters. A combined application of isotope labeling, subcellular protein fractionation and quantitative proteomics revealed two large polysaccharide utilization loci (PULs) that were specifically induced, one by alginate and the other by laminarin. These regulons comprised genes of surface-exposed proteins such as oligomer transporters, substrate-binding proteins, carbohydrate-active enzymes and hypothetical proteins. Besides, several glycan-specific TonB-dependent receptors and SusD-like substrate-binding proteins were expressed also in the absence of polysaccharide substrates, suggesting an anticipatory sensing function. Genes for the utilization of the beta-1,3-glucan laminarin were found to be co-regulated with genes for glucose and alpha-1,4-glucan utilization, which was not the case for the non-glucan alginate. Strong syntenies of the PULs of 'G. forsetii' with similar loci in other Bacteroidetes indicate that the specific response mechanisms of 'G. forsetii' to changes in polysaccharide availability likely apply to other Bacteroidetes. Our results can thus contribute to an improved understanding of the ecological niches of marine Bacteroidetes and their roles in the polysaccharide decomposition part of carbon cycling in marine ecosystems
Spatiotemporal dynamics in a spatial plankton system
In this paper, we investigate the complex dynamics of a spatial plankton-fish
system with Holling type III functional responses. We have carried out the
analytical study for both one and two dimensional system in details and found
out a condition for diffusive instability of a locally stable equilibrium.
Furthermore, we present a theoretical analysis of processes of pattern
formation that involves organism distribution and their interaction of
spatially distributed population with local diffusion. The results of numerical
simulations reveal that, on increasing the value of the fish predation rates,
the sequences spots spot-stripe mixtures
stripes hole-stripe mixtures holes wave pattern is
observed. Our study shows that the spatially extended model system has not only
more complex dynamic patterns in the space, but also has spiral waves.Comment: Published Pape
- …
