11,751 research outputs found

    Evolution of an equatorial coronal hole structure and the released coronal hole wind stream: Carrington rotations 2039 to 2050

    Full text link
    The Sun is a highly dynamic environment that exhibits dynamic behavior on many different timescales. In particular, coronal holes exhibit temporal and spatial variability. Signatures of these coronal dynamics are inherited by the coronal hole wind streams that originate in these regions and can effect the Earth's magnetosphere. Both the cause of the observed variabilities and how these translate to fluctuations in the in situ observed solar wind is not yet fully understood. During solar activity minimum the structure of the magnetic field typically remains stable over several Carrington rotations (CRs). But how stable is the solar magnetic field? Here, we address this question by analyzing the evolution of a coronal hole structure and the corresponding coronal hole wind stream emitted from this source region over 12 consecutive CRs in 2006. To this end, we link in situ observations of Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) with synoptic maps of Michelson Doppler imager (MDI) on the Solar and Heliospheric Observatory (SOHO) at the photospheric level through a combination of ballistic back-mapping and a potential field source surface (PFSS) approach. Together, these track the evolution of the open field line region that is identified as the source region of a recurring coronal hole wind stream. We find that the shape of the open field line region and to some extent also the solar wind properties are influenced by surrounding more dynamic closed loop regions. We show that the freeze-in order can change within a coronal hole wind stream on small timescales and illustrate a mechanism that can cause changes in the freeze-in order. The inferred minimal temperature profile is variable even within coronal hole wind and is in particular most variable in the outer corona

    Cordycepin in Schizosaccharomyces pombe: effects on the wild type and phenotypes of mutants resistant to the drug

    Get PDF
    The adenosine analogue cordycepin (3′-deoxyadenosine) inhibits growth and causes aberrant cell morphology in the fission yeast, Schizosaccharomyces pombe. Exogenously added thiamine, the pyrimidine moiety of the thiamine molecule, and adenine alleviate its growth-disturbing effect. At concentrations that do not inhibit growth, the drug reduces mating and sporulation and causes a decrease in the mRNA level of gene ste11 and the ste11-dependent gene, mei2. The mating- and sporulation-inhibiting effect of cordycepin is overcome by adenine. A mutant disrupted for the ado1 gene encoding adenosine kinase exhibits a cordycepin-resistant and methionine-sensitive phenotype, excretes adenosine into the medium and mates and sporulates poorly in the presence of adenine. A S. pombe mutant containing a frameshift mutation at the beginning of the carboxy-terminal half of gene ufd1 (the Saccharomyces cerevisiae UFD1 homologue) is cordycepin-resistant and sterile. Strains disrupted for the ufd1 gene only form microcolonie

    Disparity among low first ionization potential elements

    Full text link
    The elemental composition of the solar wind differs from the solar photospheric composition. Elements with low first ionization potential (FIP) appear enhanced compared to O in the solar wind relative to the respective photospheric abundances. This so-called FIP effect is different in the slow solar wind and the coronal hole wind. However, under the same plasma conditions, for elements with similar FIPs such as Mg, Si, and Fe, comparable enhancements are expected. We scrutinize the assumption that the FIP effect is always similar for different low FIP elements, namely Mg, Si, and Fe. We investigate the dependency of the FIP effect of low FIP elements on the O7+/O6+ charge state ratio depending on time and solar wind type. We order the observed FIP ratios with respect to the O7+/O6+ charge state ratio into bins and analyze separately the respective distributions of the FIP ratio of Mg, Si, and Fe for each O7+/O6+ charge state ratio bin. We observe that the FIP effect shows the same qualitative yearly behavior for Mg and Si, while Fe shows significant differences during the solar activity maximum and its declining phase. In each year, the FIP effect for Mg and Si always increases with increasing O7+/O6+ charge state ratio, but for high O7+/O6+ charge state ratios the FIP effect for Fe shows a qualitatively different behavior. During the years 2001-2006, instead of increasing with the O7+/O6+ charge state ratio, the Fe FIP ratio exhibits a broad peak. Also, the FIP distribution per O7+/O6+ charge state bin is significantly broader for Fe than for Mg and Si. These observations support the conclusion that the elemental fractionation is only partly determined by FIP. In particular, the qualitative difference behavior with increasing O7+/O6+ charge state ratio between Fe on the one hand and Mg and Si on the other hand is not yet well explained by models of fractionation

    An elliptic expansion of the potential field source surface model

    Full text link
    Context. The potential field source surface model is frequently used as a basis for further scientific investigations where a comprehensive coronal magnetic field is of importance. Its parameters, especially the position and shape of the source surface, are crucial for the interpretation of the state of the interplanetary medium. Improvements have been suggested that introduce one or more additional free parameters to the model, for example, the current sheet source surface (CSSS) model. Aims. Relaxing the spherical constraint of the source surface and allowing it to be elliptical gives modelers the option of deforming it to more accurately match the physical environment of the specific period or location to be analyzed. Methods. A numerical solver is presented that solves Laplace's equation on a three-dimensional grid using finite differences. The solver is capable of working on structured spherical grids that can be deformed to create elliptical source surfaces. Results. The configurations of the coronal magnetic field are presented using this new solver. Three-dimensional renderings are complemented by Carrington-like synoptic maps of the magnetic configuration at different heights in the solar corona. Differences in the magnetic configuration computed by the spherical and elliptical models are illustrated.Comment: 11 pages, 7 figure

    Modelling the development and arrangement of the primary vascular structure in plants

    Get PDF
    Background and Aims The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. Methods This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Key Results Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). Conclusions The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissue

    Gossamer roadmap technology reference study for a solar polar mission

    Get PDF
    A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100 – 125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2. 5μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass

    A generalized approach to model the spectra and radiation dose rate of solar particle events on the surface of Mars

    Get PDF
    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly Galactic Cosmic Rays (GCRs) modulated by solar activity that contributes to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra

    Computer experiments to determine whether over- or under-counting necessarily affects the determination of difference in cell number between experimental groups

    Get PDF
    Cataloged from PDF version of article.Computer cell counting experiments were performed in order to examine the consequences of over- or under-counting. The three-dimensional reaggregate culture laboratory environment for cell counting was used as a model for computer simulation. The laboratory environment for aggregate and cell sizes, numbers and spatial placement in gelatin blocks was mimicked in the computer setup. However, in the computer, cell counting was set to be either ideally unbiased, or deliberately biased in regard to over- or under-counting so as to compare eventual results when using the various cell counting methods. It was found that there was no effect of the cell counting methods used in determining whether there was a significant difference in cell number between two experimental groups. In addition, it was found that under the conditions of these simulations, the optical disector method behaved similarly, on the average, as the ideal method of counting cell centers and in both of those cases, the average ratio between actual cell number in a flask and estimated number was close to 1.00. © 2001 Elsevier Science B.V. All rights reserved

    Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit

    Full text link
    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the Solar Energetic Particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary CME (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere
    corecore