1,526 research outputs found
Creativity: Generating Diverse Questions using Variational Autoencoders
Generating diverse questions for given images is an important task for
computational education, entertainment and AI assistants. Different from many
conventional prediction techniques is the need for algorithms to generate a
diverse set of plausible questions, which we refer to as "creativity". In this
paper we propose a creative algorithm for visual question generation which
combines the advantages of variational autoencoders with long short-term memory
networks. We demonstrate that our framework is able to generate a large set of
varying questions given a single input image.Comment: Accepted to CVPR 201
Blending Learning and Inference in Structured Prediction
In this paper we derive an efficient algorithm to learn the parameters of
structured predictors in general graphical models. This algorithm blends the
learning and inference tasks, which results in a significant speedup over
traditional approaches, such as conditional random fields and structured
support vector machines. For this purpose we utilize the structures of the
predictors to describe a low dimensional structured prediction task which
encourages local consistencies within the different structures while learning
the parameters of the model. Convexity of the learning task provides the means
to enforce the consistencies between the different parts. The
inference-learning blending algorithm that we propose is guaranteed to converge
to the optimum of the low dimensional primal and dual programs. Unlike many of
the existing approaches, the inference-learning blending allows us to learn
efficiently high-order graphical models, over regions of any size, and very
large number of parameters. We demonstrate the effectiveness of our approach,
while presenting state-of-the-art results in stereo estimation, semantic
segmentation, shape reconstruction, and indoor scene understanding
Learning Deep Structured Models
Many problems in real-world applications involve predicting several random
variables which are statistically related. Markov random fields (MRFs) are a
great mathematical tool to encode such relationships. The goal of this paper is
to combine MRFs with deep learning algorithms to estimate complex
representations while taking into account the dependencies between the output
random variables. Towards this goal, we propose a training algorithm that is
able to learn structured models jointly with deep features that form the MRF
potentials. Our approach is efficient as it blends learning and inference and
makes use of GPU acceleration. We demonstrate the effectiveness of our
algorithm in the tasks of predicting words from noisy images, as well as
multi-class classification of Flickr photographs. We show that joint learning
of the deep features and the MRF parameters results in significant performance
gains.Comment: 11 pages including referenc
- …
