759 research outputs found

    Capturing the Long-Sought Small-Bandgap Endohedral Fullerene Sc3N@C-82 with Low Kinetic Stability

    Get PDF
    通讯作者地址: Yang, SFThe long-sought small-bandgap endohedral fullerene Sc3N@C-82 with low kinetic stability has been successfully synthesized and isolated for the first time, for which the molecular structure has been unambiguously determined as Sc3N@C-82-C-2v(39718) by single crystal X-ray diffraction. The C-82-C-2v(39718) (or labeled as C-82-C-2v(9) according to the conventional numbering of the isolated pentagon rule (IPR) isomers based on the Fowler-Monolopoulos spiral algorithm) isomeric cage of Sc3N@C-82 agrees well with its most stable isomer previously predicted by DFT computations and is dramatically different to those of the reported counterparts M3N@C-82-Cs(39663) (M = Gd, Y) based on a non-IPR C-82 isomer, revealing the strong dependence of the cage isomeric structure on the size of the encaged metal for C-82-based metal nitride clusterfullerenes (NCFs).National Natural Science Foundation of China 21132007 2137116 U1205111 National Basic Research Program of China 2011CB921400 973 project 2014CB84560

    Microcalorimetric study on the toxic effect of Pb2+ to Tetrahymena

    Get PDF
    The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P (m)) and the growth rate constant (k) were determined, which showed that values of P (m) and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P (m)) and the growth rate constant (k) were determined, which showed that values of P (m) and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+

    Real-time counting of single electron tunneling through a T-shaped double quantum dot system

    Full text link
    Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.Comment: 8 pages, 5 figure

    A new method for grain refinement in magnesium alloy: High speed extrusion machining

    Get PDF
    Magnesium alloys have received broad attentions in industry due to their competitive strength to density ratio, but the poor ductility and strength limit their wide range of applications as engineering materials. A novel severe plastic deformation (SPD) technique of high speed extrusion machining (HSEM) was used here. This method could improve the aforementioned disadvantages of magnesium alloys by one single processing step. In this work, systematic HSEM experiments with different chip thickness ratios were conducted for magnesium alloy AZ31B. The microstructure of the chips reveals that HSEM is an effective SPD method for attaining magnesium alloys with different grain sizes and textures. The magnesium alloy with bimodal grain size distribution has increased mechanical properties than initial sample. The electron backscatter diffraction (EBSD) analysis shows that the dynamic recrystallization (DRX) affects the grain refinement and resulting hardness in AZ31B. Based on the experimental observations, a new theoretical model is put forward to describe the effect of DRX on materials during HSEM. Compared with the experimental measurements, the theoretical model is effective to predict the mechanical property of materials after HSEM. (c) 2015 Elsevier B.V. All rights reserved

    Template-Free Synthesis and Enhanced Photocatalytic Performance of Uniform BiOCl Flower-Like Microspheres

    Get PDF
    Preparation of uniform BiOCl flower-like microspheres was facilely accomplished through a simple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCl nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCl samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (center dot O-2(-)) played critical roles

    Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment

    Get PDF
    An ultrafast and template-free method to synthesize three-dimensional (3D) hierarchical layered titanate microspherulite (TMS) particles with high surface area is reported. The synthesis makes use of an electrochemical spark discharge spallation (ESDS) process, during which a fast anodic reaction on the titanium surface creates a layer of titanium dioxide that instantly breaks down by the applied electrical field into the solution in the form of titanium oxide particles. The spalled particles readily react with the heated NaOH electrolyte to form the titanate particles. A typical as-prepared TMS with a diameter of 0.4 similar to 1.5 mu m is synthesized by ESDS of Ti foils in 10 M NaOH solution under an applied current density of 0.5 A cm(-2), leading to a reaction yield of approximately 0.10 similar to 0.15 g per square centimetre of exposed Ti foil within 20 min. After hydrogen ion exchange, the surface area can reach as high as similar to 406 m(2) g(-1). On the Ti surface, a crystalline rutile TiO2 nanosheet structure is formed, which is attributed to the local exothermic heat caused by the spark discharge. A formation mechanism of the TMS is discussed based on field emission scanning electron microscopy (FESEM), a transmission electron microscopy (TEM) study and Raman scattering spectroscopy analysis. The as-prepared TMS shows excellent adsorption performance compared with a titanate micro-particle (TMP), nanowire (TNW) and nanotube (TNT) when methylene blue (MB) and Pb-II ions are used as representative organic and inorganic pollutants. The mechanism of adsorption has also been discussed.National Research Foundation of Singapore Government [MEWR651/06/160

    Water isotope technology application for sustainable eco-environmental construction: Effects of landscape characteristics on water yield in the alpine headwater catchments of Tibetan Plateau for sustainable eco-environmental construction

    Get PDF
    Topography-climate-vegetation-runoff relationships are important issues in hydrological studies. In this paper, based on analyzing water isotope characteristics of river water, the influence of these variables on the relative contribution of rain to river water was investigated during one rain event in the Heishui Valley of the upper Yangtze River in China. During one rain event on August 19, 2005, a total number of 182 river water samples were collected at 13 sampling sites located along the principal river course and its tributaries. The analysis of water isotopes in the principal river course and its tributaries showed that new rain water and secondary evaporation precipitation caused great variation in values of delta D and high d-excess increased with altitude. Based on calculations of two-component hydrograph separation using delta O-18, the results showed that the biggest relative contribution of new rain to river water (43%) was found in tributary B, while the smallest contribution (less than 5%) was found in tributary I. According to stepwise linear regression analysis, topography (elevation and slope) was the most important factor affecting the contributions of new rain to river water. When only vegetation variables were considered in the regression model, alpine shrub coverage proved to be negatively correlated with the contributions of new rain to river water, while alpine meadow coverage was positively correlated with the contributions of new rain. This would imply that increasing the relative coverage of alpine shrubs in this mountainous region of China may decrease the risk of flooding. (C) 2014 Elsevier B.V. All rights reserved

    Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China

    Get PDF
    Understanding the geochemical cycling of sulfur in sediments is important because it can have implications for both modern environments (e.g., deterioration of water quality) and interpretation of the ancient past (e.g., sediment C/S ratios can be used as indicators of palaeodepositional environment). This study investigates the geochemical characteristics of sulfur, iron, and organic carbon in fluvial and coastal surface sediments of the Laizhou Bay region, China. A total of 63 sediment samples were taken across the whole Laizhou Bay marine region and the 14 major tidal rivers draining into it. Acid volatile sulfur, chromium (II)-reducible sulfur and elemental sulfur, total organic carbon, and total nitrogen were present in higher concentrations in the fluvial sediment than in the marine sediment of Laizhou Bay. The composition of reduced inorganic sulfur in surface sediments was dominated by acid volatile sulfur and chromium (II)-reducible sulfur. In fluvial sediments, sulfate reduction and formation of reduced inorganic sulfur were controlled by TOC and reactive iron synchronously. High C/S ratios in the marine sediments indicate that the diagenetic processes in Laizhou Bay have been affected by rapid deposition of sediment from the Yellow River in recent decades

    Uneven splitting-ratio 1x2 multimode interference splitters based on silicon wire waveguides

    Get PDF
    Two types of 1x2 multi-mode interference (MMI) splitters with splitting ratios of 85:15 and 72:28 are designed. On the basis of a numerical simulation, an optimal length of the MMI section is obtained. Subsequently, the devices are fabricated and tested. The footprints of the rectangular MMI regions are only 3x18.2 and 3x14.3 (mu m). The minimum excess losses are 1.4 and 1.1 dB. The results of the test on the splitting ratios are consistent with designed values. The devices can be applied in ultra-compact photonic integrated circuits to realize the "tap" function

    Methods on Investigating Properties of Electrode/Electrolyte Interfaces in Lithium-Ion Batteries

    Get PDF
    The rechargeable lithium-ion battery has been extensively used in mobile communication and portable instruments due to its many advantages, such as high volumetric and gravimetric energy density and low self-discharge rate. In addition, it is the most promising candidate as the power source for ( hybrid) electric vehicles and stationary energy storage. The properties of electrode/electrolyte interfaces play an important role in the electrochemical performance of the electrode material and a battery, such as the capacities, irreversible charge "loss", rate capability and cyclability. In present paper, the methods to investigate the properties of electrode/electrolyte interfaces, for example, traditional electrochemical methods, microscopy methods, spectroscopic methods, electrochemical quartz crystal microgravimetry (EQCM) are summarized. The principles, advantages and disadvantages of these methods and their applications in investigating the properties of electrode/electrolyte interfaces, especially the progress in the combination of these methods to investigate the properties of electrode/electrolyte interfaces, are introduced in detail, and these methods will be considerable to study the new materials or the traditional materials for lithium-ion batteries in the future
    corecore