286 research outputs found

    Multiple and plastic receptors mediate tonic GABAA receptor currents in the hippocampus

    Get PDF
    Persistent activation of GABAA receptors by extracellular GABA (tonic inhibition) plays a critical role in signal processing and network excitability in the brain. In hippocampal principal cells, tonic inhibition has been reported to be mediated by {alpha}5-subunit-containing GABAA receptors ({alpha}5GABAARs). Pharmacological or genetic disruption of these receptors improves cognitive performance, suggesting that tonic inhibition has an adverse effect on information processing. Here, we show that {alpha}5GABAARs contribute to tonic currents in pyramidal cells only when ambient GABA concentrations increase (as may occur during increased brain activity). At low ambient GABA concentrations, activation of {delta}-subunit-containing GABAA receptors predominates. In epileptic tissue, {alpha}5GABAARs are downregulated and no longer contribute to tonic currents under conditions of raised extracellular GABA concentrations. Under these conditions, however, the tonic current is greater in pyramidal cells from epileptic tissue than in pyramidal cells from nonepileptic tissue, implying substitution of {alpha}5GABAARs by other GABAA receptor subtypes. These results reveal multiple components of tonic GABAA receptor-mediated conductance that are activated by low GABA concentrations. The relative contribution of these components changes after the induction of epilepsy, implying an adaptive plasticity of the tonic current in the presence of spontaneous seizures

    Delta M_K and epsilon_K in SUSY at the Next-to-Leading order

    Full text link
    We perform a Next-to-Leading order analysis of Delta S=2 processes beyond the Standard Model. Combining the recently computed NLO anomalous dimensions and the B parameters of the most general Delta S=2 effective Hamiltonian, we give an analytic formula for Delta M_K and epsilon_K in terms of the Wilson coefficients at the high energy scale. This expression can be used for any extension of the Standard Model with new heavy particles. Using this result, we consider gluino-mediated contributions to Delta S=2 transitions in general SUSY models and provide an improved analysis of the constraints on off-diagonal mass terms between the first two generations of down-type squarks. Finally, we improve the constraints on R-violating couplings from Delta M_K and epsilon_K.Comment: 20 pages, 1 figure, uses JHEP.cls; the magic numbers in eq. (2.7), previously given in the basis (13) of hep-ph/9711402, are now given in the basis (2.3) of this work. All numerical results are unchange

    CP violation in K±π0π0π±K^{\pm}\to\pi^0\pi^0\pi^{\pm} decay

    Full text link
    CP violation leads to a difference between the parameters g+g^+ and gg^- describing the energy distributions of the charged pions produced in the K+π0π0π+K^+ \to\pi^0 \pi^0 \pi^+ and Kπ0π0πK^- \to \pi^0\pi^0 \pi^- decays. We study the difference (g+g)(g^+ - g^-) as a function of the relative contributions from the QCD-penguin and the electroweak-penguin diagrams. We find that the combination of these contributions in (g+g)(g^+ - g^-) is very similar to the corresponding one defining the parameter ϵ\epsilon' in the KL2πK_L \to 2\pi decays. This observation allows a determination of the value of (g+g)(g^+ - g^-), using data on ϵ\epsilon'

    Heterogeneous structures studied by interphase elasto-damaging model.

    Get PDF
    For all structures that are constituted by heterogeneous materials, the meso-modelling approach is the most rigorous since it analyzes such structures as an assembly of distinct elements connected by joints, the latter commonly simulated by apposite interface models. In particular, the zero-thickness interface (ZTI) models are extensively used in those cases where the joint thickness is small if compared to the other dimensions of the heterogeneosu material. In ZTI models the constitutive laws relate the contact tractions to the displacement discontinuities at the interface, but in many cases the joint response depends also on internal stresses and strains within the bulkmaterial. In this sense the interphase model represents an enhancement of the ZTI because is able to introduce the effect of internal stresses into the analysis. Particular attention is spent to the definition of a damage model in order to describe the propagation of a fracture inside the interphase element. The damage model is developed in a thermodinamically context for plane stress applications

    OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation.

    Get PDF
    Hearing impairment is the second most prevalent clinical feature after optic atrophy in Dominant Optic Atrophy associated with mutations in the OPA1 gene. In this study we characterized the hearing dysfunction in OPA1-linked disorders and provided effective rehabilitative options to improve speech perception. We studied two groups of OPA1 subjects, one comprising 11 patients (7 males; age range 13-79 years) carrying OPA1 mutations inducing haploinsufficiency, the other, 10 subjects (3 males; age range 5-58 years) carrying OPA1 missense mutations. Both groups underwent audiometric assessment with pure tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded through transtympanic electrocochleography from the group of patients harboring OPA1 missense mutations and were compared to recordings obtained from 20 normally-hearing controls and from 19 subjects with cochlear hearing loss. Eight patients carrying OPA1 missense mutations underwent cochlear implantation. Speech perception measures and electrically-evoked auditory nerve and brainstem responses were obtained after one year of cochlear implant use. Nine out of 11 patients carrying OPA1 mutations inducing haploinsufficiency had normal hearing function. In contrast, all but one subject harboring OPA1 missense mutations displayed impaired speech perception, abnormal brainstem responses and presence of otoacoustic emissions consistent with auditory neuropathy. In electrocochleography recordings, cochlear microphonic had enhanced amplitudes while summating potential showed normal latency and peak amplitude consistent with preservation of both outer and inner hair cell activities. After cancelling the cochlear microphonic, the synchronized neural response seen in both normally-hearing controls and subjects with cochlear hearing loss was replaced by a prolonged, low-amplitude negative potential that decreased in both amplitude and duration during rapid stimulation consistent with neural generation. The use of cochlear implant improved speech perception in all but one patient. Brainstem potentials were recorded in response to electrical stimulation in five subjects out of six, whereas no compound action potential was evoked from the auditory nerve through the cochlear implant. These findings indicate that underlying the hearing impairment in patients carrying OPA1 missense mutations is a disordered synchrony in auditory nerve fiber activity resulting from neural degeneration affecting the terminal dendrites. Cochlear implantation improves speech perception and synchronous activation of auditory pathways by by-passing the site of lesion

    Electromagnetic corrections in hadronic processes

    Full text link
    In quantum field theory, the splitting of the Hamiltonian into a strong and an electromagnetic part cannot be performed in a unique manner. We propose a convention for disentangling these two effects: one matches the parameters of two theories -- with and without electromagnetic interactions -- at a given scale mu_1, referred to as the matching scale. This procedure enables one to analyze the separation of strong and electromagnetic contributions in a transparent manner. We illustrate the method -- in the framework of the loop expansion -- in a Yukawa model, as well as in the linear sigma model, where we also investigate the corresponding low-energy effective theory.Comment: 19 pages (LaTex), 5 figures, published version. References in the introduction added, discussion shortened, 1 figure removed, conclusions unchange

    Magnetic Moments of Heavy Baryons

    Get PDF
    First non-trivial chiral corrections to the magnetic moments of triplet (T) and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is discussed and relations among the magnetic moments of different hadrons are provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.

    Electromagnetic Decays of Heavy Baryons

    Get PDF
    The electromagnetic decays of the ground state baryon multiplets with one heavy quark are calculated using Heavy Hadron Chiral Perturbation Theory. The M1 and E2 amplitudes for S^{*}--> S gamma, S^{*} --> T gamma and S --> T gamma are separately computed. All M1 transitions are calculated up to O(1/Lambda_chi^2). The E2 amplitudes contribute at the same order for S^{*}--> S gamma, while for S^{*} --> T gamma they first appear at O(1/(m_Q \Lambda_\chi^2)) and for S --> T gamma are completely negligible. The renormalization of the chiral loops is discussed and relations among different decay amplitudes are derived. We find that chiral loops involving electromagnetic interactions of the light pseudoscalar mesons provide a sizable enhancement of these decay widths. Furthermore, we obtain an absolute prediction for the widths of Xi^{0'(*)}_c--> Xi^{0}_c gamma and Xi^{-'(*)}_b--> Xi^{-}_b gamma. Our results are compared to other estimates existing in the literature.Comment: 17 pages, 3 figures, submitted to Phys. Rev.

    K -> 3 pi Final State Interactions at NLO in CHPT and Cabibbo's Proposal to Measure a_0-a_2

    Get PDF
    We present the analytical results for the K -> 3 pi final state interactions at next-to-leading order (NLO) in CHPT. We also study the recent Cabibbo's proposal to measure the pi-pi scattering lenghts combination a_0-a_2 from the cusp effect in the pi^0-pi^0 energy spectrum at threshold for K^+ -> pi^0 pi^0 pi^+ and K_L -> pi^0 pi^0 pi^0$, and give the relevant formulas to describe it at NLO. For that, we use the NLO CHPT expression to fit the real part of K -> 3 pi to data while the pi-pi scattering lenghts are treated non-perturbatively. Using them, we make a quantitative estimate of the theoretical uncertaintity of the a_0-a_2 determination at NLO in our approach and obtain that it is not smaller than 5 % if added quadratically and 7 % if linearly for K^+ -> pi^0 pi^0 pi^+. One gets similar theoretical uncertainties if the neutral K_L -> pi^0 pi^0 pi^0 decay data below threshold are used instead. For this decay, there are very large theoretical uncertainties above threshold due to cancellations and data above threshold cannot be used to get the scattering lenghts. All the numbers we present are in the isospin limit apart of two-pion phase space factors which are physical. We compare our results for the cusp effect with Cabibbo and Isidori's results and discuss the differences and agreements. We also comment on the apperance of the singularity at the K -> 3 pi pseudo-threshold s=(m_K-m_pi)^2 in the discontinuity that defines the cusp.Comment: 31 pages, 8 figures. v2=v3 Added the full contributions to the cusp from the real part of the discontinuity. v4 Improved text. Matches published versio

    CP Asymmetry of BXsl+lB\to X_sl^+l^- in Low Invariant Mass Region

    Get PDF
    I analyzed the CP asymmetry of BXsl+lB\to X_sl^+l^- based on model-independent analysis which includes twelve independent four Fermi operators. The CP asymmetry is suppressed in the Standard Model, however, if some new physics make it much larger, the present or the next generation B factories may catch the CP violation in this decay mode. In this paper, we studied the correlation of the asymmetry and the branching ratio, and then we will find only a type of interactions can be enlarge the asymmetry. Therefore, in comparison with experiments, we have possibility that we can constrain models beyond the standard model.Comment: 12 pages, 5 figures, LaTeX, Accepted for Physical Review
    corecore