2,676 research outputs found

    Characterization of the atmospheric depth profile using the ground-level temperature: The case of Malargüe, Argentina

    Get PDF
    We present a study of the atmospheric depth profile and the dependence with its characteristic parameters. We introduce a new model, named GAMMA, based on a parameterization that allows us to obtain the atmospheric depth profile specifying only one simple physical parameter, namely the temperature at ground. The GAMMA model consists of a multilayer representation of the atmosphere that can be adjusted conveniently via constrained fits that are built to ensure interlayer continuity for both atmospheric depth and density profiles. Our analysis uses experimental data collected at Malargüe, Argentina by meteorological radiosondes. The GAMMA model can reproduce the averaged atmospheric depth profiles in all the cases available for analysis with good accuracy. The relative differences between model predictions and averaged data are always less than approximately 0.7%.Fil: Moreno, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Sciutto, Sergio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentin

    Current status of the AIRES air shower simulation system

    Get PDF

    Production and propagation of heavy hadrons in air-shower simulators

    Get PDF
    Very energetic charm and bottom hadrons may be produced in the upper atmosphere when a primary cosmic ray or the leading hadron in an extensive air shower collide with a nucleon. At E108E\approx 10^8 GeV their decay length becomes of the order of 10 km, implying that they tend to interact in the air instead of decaying. Since the inelasticity in these collisions is much smaller than the one in proton and pion collisions, there could be rare events where a heavy-hadron component transports a significant amount of energy deep into the atmosphere. We have developed a module for the detailed simulation of these processes and have included it in a new version of the air shower simulator AIRES. We study the frequency, the energy distribution and the depth of charm and bottom production, as well as the depth and the energy distribution of these quarks when they decay. As an illustration, we consider the production and decay of tau leptons (from DsD_s decays) and the lepton flux at PeV energies from a 30 EeV proton primary. The proper inclusion of charm and bottom hadrons in AIRES opens the possibility to search for air-shower observables that are sensitive to heavy quark effects.Comment: Accepted for publication in Astroparticle Physic
    corecore