146 research outputs found

    Molecular Systematics of the Drosophila hydei Subgroup as Inferred from Mitochondrial DNA Sequences

    Get PDF

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Mechanisms underlying the sperm quality advantage in sperm competition and cryptic female choice in Drosophila melanogaster

    Get PDF
    Contrary to early predictions of sperm competition theory, postcopulatory sexual selection favoring increased investment per sperm (e.g., sperm size, sperm quality) has been demonstrated in numerous organisms. Recent findings reveal that sperm production strategies are highly variable, with males of some species producing relatively few, giant sperm. We empirically demonstrate for Drosophila melanogaster that both sperm quality and sperm quantity independently contribute to competitive male fertilization success. The interaction between sperm quality and quantity suggests an internal positive reinforcement on selection for sperm quality, with selection predicted to intensify as investment per sperm increases and the number of sperm competing declines. The mechanism underlying the sperm quality advantage is elucidated through examination of the relationship between female sperm-storage organ morphology and the differential organization of different length sperm within the organ. Our results exemplify that primary sex cells can bear secondary sexual straits

    Proteomic diversification of spermatostyles among six species of whirligig beetles

    Get PDF
    Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.Whirligig beetle sperm travel cooperatively through the female reproductive tract attached to a spermatostyle, a poorly studied rod-like structure. Proteome characterization revealed that spermatostyles are comprised of a restricted set of proteases and possess catalytic activity. Spermatostyle composition was also found to codiversify with spermatostyle length and female tract morphology. imag

    Male × Female Interaction for a Pre-Copulatory Trait, but Not a Post-Copulatory Trait, among Cosmopolitan Populations of Drosophila melanogaster

    Get PDF
    Sexual coevolution occurs when changes in the phenotype of one sex select for changes in the other sex. We can identify the “footprint” of this coevolution by mating males and females from different populations and testing for a male-female genotype interaction for a trait associated with male (or female) performance. Here we mated male Drosophila melanogaster from five different continents with females from their own and different continents to test for a male-female interaction for mating speed, a pre-copulatory trait, and female reproductive investment, a post-copulatory trait. We found a strong male-female interaction for mating speed, consistent with previous studies using different populations, suggesting that the potential for sexual coevolution for this trait is present in this species. In contrast, we did not detect a male-female interaction for female reproductive investment. Although a male-female interaction for mating speed is compatible with the hypothesis of ongoing sexual coevolution, the nature of our experimental design is unable to exclude alternate explanations. Thus, the evolutionary mechanisms promoting male-female genotype interactions for pre-copulatory mating traits in D. melanogaster warrant further investigation

    Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents

    Get PDF
    Sperm competition favors increases in relative testes mass and production efficiency, and changes in sperm phenotype that result in faster swimming speeds. However, little is known about its effects on traits that contribute to determine the quality of a whole ejaculate (i.e., proportion of motile, viable, morphologically normal and acrosome intact sperm) and that are key determinants of fertilization success. Two competing hypotheses lead to alternative predictions: (a) sperm quantity and quality traits co-evolve under sperm competition because they play complementary roles in determining ejaculate's competitive ability, or (b) energetic constraints force trade-offs between traits depending on their relevance in providing a competitive advantage. We examined relationships between sperm competition levels, sperm quantity, and traits that determine ejaculate quality, in a comparative study of 18 rodent species using phylogenetically controlled analyses. Total sperm numbers were positively correlated to proportions of normal sperm, acrosome integrity and motile sperm; the latter three were also significantly related among themselves, suggesting no trade-offs between traits. In addition, testes mass corrected for body mass (i.e., relative testes mass), showed a strong association with sperm numbers, and positive significant associations with all sperm traits that determine ejaculate quality with the exception of live sperm. An “overall sperm quality” parameter obtained by principal component analysis (which explained 85% of the variance) was more strongly associated with relative testes mass than any individual quality trait. Overall sperm quality was as strongly associated with relative testes mass as sperm numbers. Thus, sperm quality traits improve under sperm competition in an integrated manner suggesting that a combination of all traits is what makes ejaculates more competitive. In evolutionary terms this implies that a complex network of genetic and developmental pathways underlying processes of sperm formation, maturation, transport in the female reproductive tract, and preparation for fertilization must all evolve in concert

    Investment in Testes and the Cost of Making Long Sperm in Drosophila

    Full text link

    Sperm form and function: what do we know about the role of sexual selection?

    Full text link
    Sperm morphological variation has attracted considerable interest and generated a wealth of (mostly descriptive) studies over the past three centuries. Yet, apart from biophysical studies linking sperm morphology to swimming velocity, surprisingly little is known about the adaptive significance of sperm form and the selective processes underlying its tremendous diversification throughout the animal kingdom. Here, we first discuss the challenges of examining sperm morphology in an evolutionary context and why our understanding of it is still so poor. Then, we review empirical evidence for how sexual selection theory applies to the evolution of sperm form and function, including putative secondary sexual traits borne by sperm

    Intensity of sexual selection along the anisogamy–isogamy continuum

    No full text
    Research into the evolution of giant sperm has uncovered a paradox within the foundations of sexual selection theory. Post- copulatory sexual selection on males (that is, sperm competition and cryptic female choice) can lead to decreased sperm numbers by favouring the production of larger sperm1. However, a decline in sperm numbers is predicted to weaken selection on males and increase selection on females2,3. As isogamy is approached (that is, as investment per gamete by males approaches that by females), sperm become less abundant, ova become relatively less rare, and competition between males for fertilization success is predicted to weaken. Sexual selection for longer sperm, therefore, is expected to be self limiting. Here we examine this paradox in Drosophila along the anisogamy–isogamy continuum using intraspecific experimental evolution techniques and interspecific comparative techniques. Our results confirm the big-sperm paradox by show- ing that the sex difference in sexual selection gradients4 decreases as sperm size increases. However, a resolution to the paradox is provided when this finding is interpreted in concert with the 'opportunity for selection' and the 'opportunity for sexual selec- tion'5,6. Furthermore, we show that most of the variation in measures of selection intensity is explained by sperm length and relative investment in sperm production
    corecore