2,179 research outputs found

    THE ECONOMIC CONSEQUENCES OF EUROPEAN UNION A Symposium on Some Policy Aspects. THE ECONOMIC AND SOCIAL RESEARCH INSTITUTE, DUBLIN, 1986

    Get PDF
    The papers published here, together with the Matthews paper, address some of the economic questions on which discussion of further European integration should be based. Will European prosperity bring Irish prosperity? Does a free market threaten traditional Irish industry, or aid new Irish industry, or both? How can a small peripheral economy survive and prosper in a monetary union? How much autonomy does an Irish government at present enjoy in monetary and fiscal policy? Are Ireland’s interests close to the Community average? Questions such as these are asked by politicians, who expect economists to answer them; economists tend to react by asking further questions, by demanding quantitative data on which to base their assessments. It is one of the positive points of these papers that the economists have been willing to be drawn out on some of these current issues of political economy, even if others remain to be tackled. I believe that the burden of these papers does not suggest any reason for doubting that in the long term it is in Ireland’s interest that the Community should be economically and politically strong, and that Ireland should be a full partner in that Community

    Photometric and proper motion study of neglected open cluster NGC 2215

    Full text link
    Optical UBVRI photometric measurements using the Faulkes Telescope North were taken in early 2011 and combined with 2MASS JHKs_s and WISE infrared photometry as well as UCAC4 proper motion data in order to estimate the main parameters of the galactic open cluster NGC 2215 of which large uncertainty exists in the current literature. Fitting a King model we estimate a core radius of 1.12±'\pm0.04' (0.24±\pm0.01pc) and a limiting radius of 4.3±4.3'\pm0.5' (0.94±\pm0.11pc) for the cluster. The results of isochrone fits indicates an age of log(t)=8.85±0.10log(t)=8.85\pm0.10 with a distance of d=790±90d=790\pm90pc, a metallicity of [Fe/H]=0.40±0.10[Fe/H]=-0.40\pm0.10 dex and a reddening of E(BV)=0.26±0.04E(B-V)=0.26\pm0.04. A proportion of the work in this study was undertaken by Australian and Canadian upper secondary school students involved in the Space to Grow astronomy education project, and is the first scientific publication to have utilized our star cluster photometry curriculum materials.Comment: 10 pages, 9 Figures, 3 Table

    Edwards thermodynamics of the jamming transition for frictionless packings: ergodicity test and role of angoricity and compactivity

    Full text link
    This paper illustrates how the tools of equilibrium statistical mechanics can help to explain a far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the thermodynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables). We find that Edwards thermodynamics is able to describe the jamming transition (J-point). Using the ensemble formalism we elucidate the following: (i)We test the combined volume-stress ensemble by comparing the statistical properties of jammed configurations obtained by dynamics with those averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity. Agreement between both methods supports the idea of "thermalization" at a given angoricity and compactivity. (ii) A microcanonical ensemble analysis supports the idea of maximum entropy principle for grains. (iii) The intensive variables describe the approach to jamming through a series of scaling relations as A {\to} 0+ and X {\to} 0-. Due to the force-volume coupling, the jamming transition can be probed thermodynamically by a "jamming temperature" TJ comprised of contributions from A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by showing the absence of critical fluctuations at jamming in observables like pressure and volume. (v) Finally, we elaborate on a comparison with relevant studies showing a breakdown of equiprobability of microstates.Comment: 22pages, 24 figure

    Memantine Augmentation in a Down's Syndrome Adolescent with Treatment- Resistant Obsessive-Compulsive Disorder

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140323/1/cap.2015.0073.pd

    Searching for Exoplanets Using a Microresonator Astrocomb

    Get PDF
    Detection of weak radial velocity shifts of host stars induced by orbiting planets is an important technique for discovering and characterizing planets beyond our solar system. Optical frequency combs enable calibration of stellar radial velocity shifts at levels required for detection of Earth analogs. A new chip-based device, the Kerr soliton microcomb, has properties ideal for ubiquitous application outside the lab and even in future space-borne instruments. Moreover, microcomb spectra are ideally suited for astronomical spectrograph calibration and eliminate filtering steps required by conventional mode-locked-laser frequency combs. Here, for the calibration of astronomical spectrographs, we demonstrate an atomic/molecular line-referenced, near-infrared soliton microcomb. Efforts to search for the known exoplanet HD 187123b were conducted at the Keck-II telescope as a first in-the-field demonstration of microcombs

    Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome

    Get PDF
    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500
    corecore