819 research outputs found
Discussion of: A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable?
Discussion of "A statistical analysis of multiple temperature proxies: Are
reconstructions of surface temperatures over the last 1000 years reliable?" by
B.B. McShane and A.J. Wyner [arXiv:1104.4002]Comment: Published in at http://dx.doi.org/10.1214/10-AOAS398F the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Prime beef cuts : culinary images for thinking 'men'
The paper contributes to scholarship theorising the sociality of the brand in terms of subject positions it makes possible through drawing upon the generative context of circulating discourses, in this case of masculinity, cuisine and celebrity. Specifically, it discusses masculinity as a socially constructed gender practice (Bristor and Fischer, 1993), examining materialisations of such practice in the form of visualisations of social relations as resources for 'thinking gender' or 'doing gender'. The transformative potential of the visualisations is illuminated by exploring the narrative content choreographed within a series of photographic images positioning the market appeal of a celebrity chef through the medium of a contemporary lifestyle cookery book. We consider how images of men 'doing masculinity'are not only channelled into reproducing existing gender hierarchy and compulsory heterosexuality in the service of commercial ends, but also into disrupting such enduring stereotyping through subtle reframing. We acknowledge that masculinity is already inscribed within conventionalised representations of culinary culture. In this case we consider how traces of masculinity are exploited and reinscribed through contemporary images that generate resources for rethinking masculine roles and identities, especially when viewed through the lens of stereotypically feminised pursuits such as shopping, food preparation, cooking, and the communal intimacy of food sharing. We identify unsettling tensions within the compositions, arguing that they relate to discursive spaces between the gendered positions written into the images and the popular imagination they feed off. Set against landscapes of culinary culture, we argue that the images invoke a brand of naively roughish "laddishness" or "blokishness", rendering it in domesticated form not only as benign and containable, but fashionable, pliable and, importantly, desirable. We conclude that although the images draw on stereotypical premeditated notions of a feral, boisterous and untamed heterosexual masculinity, they also set in motion gender-blending narratives
Joint analysis of stressors and ecosystem services to enhance restoration effectiveness
With increasing pressure placed on natural systems by growing human populations, both scientists and resource managers need a better understanding of the relationships between cumulative stress from human activities and valued ecosystem services. Societies often seek to mitigate threats to these services through large-scale, costly restoration projects, such as the over one billion dollar Great Lakes Restoration Initiative currently underway. To help inform these efforts, we merged high-resolution spatial analyses of environmental stressors with mapping of ecosystem services for all five Great Lakes. Cumulative ecosystem stress is highest in near-shore habitats, but also extends offshore in Lakes Erie, Ontario, and Michigan. Variation in cumulative stress is driven largely by spatial concordance among multiple stressors, indicating the importance of considering all stressors when planning restoration activities. In addition, highly stressed areas reflect numerous different combinations of stressors rather than a single suite of problems, suggesting that a detailed understanding of the stressors needing alleviation could improve restoration planning. We also find that many important areas for fisheries and recreation are subject to high stress, indicating that ecosystem degradation could be threatening key services. Current restoration efforts have targeted high-stress sites almost exclusively, but generally without knowledge of the full range of stressors affecting these locations or differences among sites in service provisioning. Our results demonstrate that joint spatial analysis of stressors and ecosystem services can provide a critical foundation for maximizing social and ecological benefits from restoration investments. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1213841110/-/DCSupplementa
Combinatorial quorum sensing allows bacteria to resolve their social and physical environment
Quorum sensing (QS) is a cell–cell communication system that controls gene expression in many bacterial species, mediated by diffusible signal molecules. Although the intracellular regulatory mechanisms of QS are often well-understood, the functional roles of QS remain controversial. In particular, the use of multiple signals by many bacterial species poses a serious challenge to current functional theories. Here, we address this challenge by showing that bacteria can use multiple QS signals to infer both their social (density) and physical (mass-transfer) environment. Analytical and evolutionary simulation models show that the detection of, and response to, complex social/physical contrasts requires multiple signals with distinct half-lives and combinatorial (nonadditive) responses to signal concentrations. We test these predictions using the opportunistic pathogen Pseudomonas aeruginosa and demonstrate significant differences in signal decay betweeallyn its two primary signal molecules, as well as diverse combinatorial responses to dual-signal inputs. QS is associated with the control of secreted factors, and we show that secretome genes are preferentially controlled by synergistic “AND-gate” responses to multiple signal inputs, ensuring the effective expression of secreted factors in high-density and low mass-transfer environments. Our results support a new functional hypothesis for the use of multiple signals and, more generally, show that bacteria are capable of combinatorial communication
Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.
Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology
Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation
yesInflammation of adipose tissue in obesity is associated with increased IL-1β, IL-6 and TNF-α secretion and proposed to contribute to insulin resistance. AMP-activated protein kinase (AMPK) regulates nutrient metabolism and is reported to have anti-inflammatory actions in adipose tissue, yet the mechanisms underlying this remain poorly characterised. The effect of AMPK activation on cytokine-stimulated proinflammatory signalling was therefore assessed in cultured adipocytes. AMPK activation inhibited IL-1β-stimulated CXCL10 secretion, associated with reduced interleukin-1 receptor associated kinase-4 (IRAK4) phosphorylation and downregulated MKK4/JNK and IKK/IκB/NFκB signalling. AMPK activation inhibited TNF-α-stimulated IKK/IκB/NFκB signalling but had no effect on JNK phosphorylation. The JAK/STAT3 pathway was also suppressed by AMPK after IL-6 stimulation and during adipogenesis. Adipose tissue from AMPKα1−/− mice exhibited increased JNK and STAT3 phosphorylation, supporting suppression of these distinct proinflammatory pathways by AMPK in vivo. The inhibition of multiple pro-inflammatory signalling pathways by AMPK may underlie the reported beneficial effects of AMPK activation in adipose tissue.British Heart Foundatio
Bacterial diversity and community composition from seasurface to subseafloor
© The International Society for Microbial Ecology, 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ISME Journal 10 (2016): 979–989, doi:10.1038/ismej.2015.175.We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (greater than or equal to1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.This study was funded by the Biological Oceanography Program of the US National Science Foundation (grant OCE-0752336) and by the NSF-funded Center for Dark Energy Biosphere Investigations (grant NSF-OCE-0939564)
Solutions For Grand Challenges In Goat And Sheep Production
Goats and sheep are valuable livestock as they produce food, such as meat, milk, fleece, and other products. In addition, goats and sheep are important both for agriculture and biomedical research. Even though these small ruminants provide essential goods, there are major obstacles preventing the efficient, sustainable, and profitable production of goats and sheep. This review is significant because it summarizes major challenges facing goat and sheep production, their negative impacts, and specific science-based solutions to overcome them. These challenge areas are education and training, research, translational research/biotechnology, goat and sheep health, and effective/efficient/sustainable/profitable agribusiness. The solutions include effective teaching of goat and sheep science to next generation and empowering the public, supporting and pursuing innovative and translational research, preventing and treating diseases, facilitating technology transfer, and developing sound agribusinesses. This resource is expected to be helpful to scientists, students, and goat and sheep producers. In addition, the information on the current state of goat and sheep agriculture will help the public better understand and appreciate challenges and opportunities in small ruminant production
Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective.
In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed
- …
