320 research outputs found
An Optimized Protocol for Rearing Fopius arisanus, a Parasitoid of Tephritid Fruit Flies
Fopius arisanus (Sonan) is an important parasitoid of Tephritid fruit flies for at least two reasons. First, it is the one of only three opiine parasitoids known to infect the host during the egg stage1. Second, it has a wide range of potential fruit fly hosts. Perhaps due to its life history, F. arisanus has been a successfully used for biological control of fruit flies in multiple tropical regions2-4. One impediment to the wide use of F. arisanus for fruit fly control is that it is difficult to establish a stable laboratory colony5-9. Despite this difficulty, in the 1990s USDA researchers developed a reliable method to maintain laboratory populations of F. arisanus10-12. There is significant interest in F. arisanus biology13,14, especially regarding its ability to colonize a wide variety of Tephritid hosts14-17; interest is especially driven by the alarming spread of Bactrocera fruit fly pests to new continents in the last decade18. Further research on F. arisanus and additional deployments of this species as a biological control agent will benefit from optimizations and improvements of rearing methods. In this protocol and associated video article we describe an optimized method for rearing F. arisanus based on a previously described approach12. The method we describe here allows rearing of F. arisanus in a small scale without the use of fruit, using materials available in tropical regions around the world and with relatively low manual labor requirements
Functional genomics and microbiome profiling of the Asian longhorned beetle (\u3ci\u3eAnoplophora glabripennis\u3c/i\u3e) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles
Background: Wood-feeding beetles harbor an ecologically rich and taxonomically diverse assemblage of gut microbes that appear to promote survival in woody tissue, which is devoid of nitrogen and essential nutrients. Nevertheless, the contributions of these apparent symbionts to digestive physiology and nutritional ecology remain uncharacterized in most beetle lineages.
Results: Through parallel transcriptome profiling of beetle- and microbial- derived mRNAs, we demonstrate that the midgut microbiome of the Asian longhorned beetle (Anoplophora glabripennis), a member of the beetle family Cerambycidae, is enriched in biosynthetic pathways for the synthesis of essential amino acids, vitamins, and sterols. Consequently, the midgut microbiome of A. glabripennis can provide essential nutrients that the beetle cannot obtain from its woody diet or synthesize itself. The beetle gut microbiota also produce their own suite of transcripts that can enhance lignin degradation, degrade hemicellulose, and ferment xylose and wood sugars. An abundance of cellulases from several glycoside hydrolase families are expressed endogenously by A. glabripennis, as well as transcripts that allow the beetle to convert microbe-synthesized essential amino acids into non-essential amino acids. A. glabripennis and its gut microbes likely collaborate to digest carbohydrates and convert released sugars and amino acid intermediates into essential nutrients otherwise lacking from their woody host plants.
Conclusions: The nutritional provisioning capabilities of the A. glabripennis gut microbiome may contribute to the beetles’ unusually broad host range. The presence of some of the same microbes in the guts of other Cerambycidae and other wood-feeding beetles suggests that partnerships with microbes may be a facilitator of evolutionary radiations in beetles, as in certain other groups of insects, allowing access to novel food sources through enhanced nutritional provisioning
A genomic perspective to assessing quality of mass-reared SIT flies used in Mediterranean fruit fly (Ceratitis capitata) eradication in California
BACKGROUND: Temperature sensitive lethal (tsl) mutants of the tephritid C. capitata are used extensively in control programs involving sterile insect technique in California. These flies are artificially reared and treated with ionizing radiation to render males sterile for further release en masse into the field to compete with wild males and disrupt establishment of invasive populations. Recent research suggests establishment of C. capitata in California, despite the fact that over 250 million sterile flies are released weekly as part of the state’s preventative program. In this project, genome-level quality assessment was performed, measured as expression differences between the Vienna-7 tsl mutants used in SIT programs and wild flies. RNA-seq was performed to provide a genome-wide map of the messenger RNA populations in C. capitata, and to investigate significant expression changes in Vienna-7 mass reared flies. RESULTS: Flies from the Vienna-7 colony showed a markedly reduced abundance of transcripts related to visual and chemical responses, including light stimuli, neural development and signaling pathways when compared to wild flies. In addition, genes associated with muscle development and locomotion were shown to be reduced. This suggests that the Vienna-7 line may be less competitive in mating and host plant finding where these stimuli are utilized. Irradiated flies showed several transcripts representing stress associated with irradiation. CONCLUSIONS: There are significant changes at the transcriptome level that likely alter the competitiveness of mass reared flies and provide justification for pursuing methods for strain improvement, increasing competitiveness of mass-reared flies, or exploring alternative SIT approaches to increase the efficiency of eradication programs
\u3ci\u3eWheat streak mosaic virus\u3c/i\u3e alters the transcriptome of its vector, wheat curl mite (\u3ci\u3eAceria tosichella Keifer\u3c/i\u3e), to enhance mite development and population expansion
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus–vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus–vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission
Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus–vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate 0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus–vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission
Divergent Switchgrass Cultivars Modify Cereal Aphid Transcriptomes
Schizaphis graminum Rondani (Hemiptera: Aphididae) and Sipha flava Forbes (Hemiptera: Aphididae) are two common pests of bioenergy grasses. Despite the fact that they are both considered generalists, they differ in their ability to colonize Panicum virgatum cultivars. For example, S. flava colonizes both P. virgatum cv. Summer and P. virgatum cv. Kanlow whereas S. graminum can only colonize Summer. To study the molecular responses of these aphids to these two switchgrass cultivars, we generated de novo transcriptome assemblies and compared the expression profiles of aphids feeding on both cultivars to profiles associated with feeding on a highly susceptible sorghum host and a starvation treatment. Transcriptome assemblies yielded 8,428 and 8,866 high-quality unigenes for S. graminum and S. flava, respectively. Overall, S. graminum responded strongly to all three treatments after 12 h with an upregulation of unigenes coding for detoxification enzymes while major transcriptional changes were not observed in S. flava until 24 h. Additionally, while the two aphids responded to the switchgrass feeding treatment by downregulating unigenes linked to growth and development, their responses to Summer and Kanlow diverged significantly. Schizaphis graminum upregulated more unigenes coding for stress-responsive enzymes in the Summer treatment compared to S. flava; however, many of these unigenes were actually downregulated in the Kanlow treatment. In contrast, S. flava appeared capable of overcoming host defenses by upregulating a larger number of unigenes coding for detoxification enzymes in the Kanlow treatment. Overall, these findings are consistent with previous studies on the interactions of these two cereal aphids to divergent switchgrass hosts
Repeated Shifts in Sociality Are Associated With Fine-tuning of Highly Conserved and Lineage-Specific Enhancers in a Socially Flexible Bee
Comparative genomic studies of social insects suggest that changes in gene regulation are associated with evolutionary transitions in social behavior, but the activity of predicted regulatory regions has not been tested empirically. We used self-transcribing active regulatory region sequencing, a high-throughput enhancer discovery tool, to identify and measure the activity of enhancers in the socially variable sweat bee, Lasioglossum albipes. We identified over 36,000 enhancers in the L. albipes genome from 3 social and 3 solitary populations. Many enhancers were identified in only a subset of L. albipes populations, revealing rapid divergence in regulatory regions within this species. Population-specific enhancers were often proximal to the same genes across populations, suggesting compensatory gains and losses of regulatory regions may preserve gene activity. We also identified 1,182 enhancers with significant differences in activity between social and solitary populations, some of which are conserved regulatory regions across species of bees. These results indicate that social trait variation in L. albipes is associated with the fine-tuning of ancient enhancers as well as lineage-specific regulatory changes. Combining enhancer activity with population genetic data revealed variants associated with differences in enhancer activity and identified a subset of differential enhancers with signatures of selection associated with social behavior. Together, these results provide the first empirical map of enhancers in a socially flexible bee and highlight links between cis-regulatory variation and the evolution of social behavior
Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle
Abstract
Background
Wood-feeding insects often work in collaboration with microbial symbionts to degrade lignin biopolymers and release glucose and other fermentable sugars from recalcitrant plant cell wall carbohydrates, including cellulose and hemicellulose. Here, we present the midgut transcriptome of larval Anoplophora glabripennis, a wood-boring beetle with documented lignin-, cellulose-, and hemicellulose- degrading capabilities, which provides valuable insights into how this insect overcomes challenges associated with feeding in woody tissue.
Results
Transcripts from putative protein coding regions of over 9,000 insect-derived genes were identified in the A. glabripennis midgut transcriptome using a combination of 454 shotgun and Illumina paired-end reads. The most highly-expressed genes predicted to encode digestive-related enzymes were trypsins, carboxylesterases, β-glucosidases, and cytochrome P450s. Furthermore, 180 unigenes predicted to encode glycoside hydrolases (GHs) were identified and included several GH 5, 45, and 48 cellulases, GH 1 xylanases, and GH 1 β-glucosidases. In addition, transcripts predicted to encode enzymes involved in detoxification were detected, including a substantial number of unigenes classified as cytochrome P450s (CYP6B) and carboxylesterases, which are hypothesized to play pivotal roles in detoxifying host tree defensive chemicals and could make important contributions to A. glabripennis’ expansive host range. While a large diversity of insect-derived transcripts predicted to encode digestive and detoxification enzymes were detected, few transcripts predicted to encode enzymes required for lignin degradation or synthesis of essential nutrients were identified, suggesting that collaboration with microbial enzymes may be required for survival in woody tissue.
Conclusions
A. glabripennis produces a number of enzymes with putative roles in cell wall digestion, detoxification, and nutrient extraction, which likely contribute to its ability to thrive in a broad range of host trees. This system is quite different from the previously characterized termite fermentation system and provides new opportunities to discover enzymes that could be exploited for cellulosic ethanol biofuel production or the development of novel methods to control wood-boring pests.
</jats:sec
The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species
The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control
- …
