988 research outputs found

    Quantum Chaos: Reduced Density Matrix Fluctuations in Coupled Systems

    Full text link
    Following a recent work (briefly reviewed below) we consider temporal fluctuations in the reduced density matrix elements for a coupled system involving a pair of kicked rotors as also one made up of a pair of Harper Hamiltonians. These dynamical fluctuations are found to constitute a reliable indicator of the degree of chaos in the quantum dynamics, and are related to stationary features like the eigenvalue and eigenvector distributions of the system under consideration. A brief comparison is made with the evolution of the reduced distribution function in the classical phase space.Comment: 19 pages, 13 figures, elsart styl

    Entanglement production in Quantized Chaotic Systems

    Full text link
    Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, presence of chaos in the system produces more entanglement. However, coupling strength between two subsystems is also very important parameter for the entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic

    Generalized Entanglement as a Natural Framework for Exploring Quantum Chaos

    Get PDF
    We demonstrate that generalized entanglement [Barnum {\em et al.}, Phys. Rev. A {\bf 68}, 032308 (2003)] provides a natural and reliable indicator of quantum chaotic behavior. Since generalized entanglement depends directly on a choice of preferred observables, exploring how generalized entanglement increases under dynamical evolution is possible without invoking an auxiliary coupled system or decomposing the system into arbitrary subsystems. We find that, in the chaotic regime, the long-time saturation value of generalized entanglement agrees with random matrix theory predictions. For our system, we provide physical intuition into generalized entanglement within a single system by invoking the notion of extent of a state. The latter, in turn, is related to other signatures of quantum chaos.Comment: clarified and expanded version accepted by Europhys. Let

    Hypersensitivity and chaos signatures in the quantum baker's maps

    Get PDF
    Classical chaotic systems are distinguished by their sensitive dependence on initial conditions. The absence of this property in quantum systems has lead to a number of proposals for perturbation-based characterizations of quantum chaos, including linear growth of entropy, exponential decay of fidelity, and hypersensitivity to perturbation. All of these accurately predict chaos in the classical limit, but it is not clear that they behave the same far from the classical realm. We investigate the dynamics of a family of quantizations of the baker's map, which range from a highly entangling unitary transformation to an essentially trivial shift map. Linear entropy growth and fidelity decay are exhibited by this entire family of maps, but hypersensitivity distinguishes between the simple dynamics of the trivial shift map and the more complicated dynamics of the other quantizations. This conclusion is supported by an analytical argument for short times and numerical evidence at later times.Comment: 32 pages, 6 figure

    Chaos in a double driven dissipative nonlinear oscillator

    Get PDF
    We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in quantum state diffusion approach. Quantum dynamical manifestation of chaotic behavior, including the emergence of chaos, properties of strange attractors, and quantum entanglement are studied by numerical simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure

    Can chaotic quantum energy levels statistics be characterized using information geometry and inference methods?

    Full text link
    In this paper, we review our novel information geometrodynamical approach to chaos (IGAC) on curved statistical manifolds and we emphasize the usefulness of our information-geometrodynamical entropy (IGE) as an indicator of chaoticity in a simple application. Furthermore, knowing that integrable and chaotic quantum antiferromagnetic Ising chains are characterized by asymptotic logarithmic and linear growths of their operator space entanglement entropies, respectively, we apply our IGAC to present an alternative characterization of such systems. Remarkably, we show that in the former case the IGE exhibits asymptotic logarithmic growth while in the latter case the IGE exhibits asymptotic linear growth. At this stage of its development, IGAC remains an ambitious unifying information-geometric theoretical construct for the study of chaotic dynamics with several unsolved problems. However, based on our recent findings, we believe it could provide an interesting, innovative and potentially powerful way to study and understand the very important and challenging problems of classical and quantum chaos.Comment: 21 page

    Periodic orbit quantization of a Hamiltonian map on the sphere

    Get PDF
    In a previous paper we introduced examples of Hamiltonian mappings with phase space structures resembling circle packings. It was shown that a vast number of periodic orbits can be found using special properties. We now use this information to explore the semiclassical quantization of one of these maps.Comment: 23 pages, REVTEX

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Expectancy and Treatment Interactions: A Dissociation between Acupuncture Analgesia and Expectancy Evoked Placebo Analgesia

    Get PDF
    Recent advances in placebo research have demonstrated the mind's power to alter physiology. In this study, we combined an expectancy manipulation model with both verum and sham acupuncture treatments to address: 1) how and to what extent treatment and expectancy effects — including both subjective pain intensity levels (pain sensory ratings) and objective physiological activations (fMRI) — interact; and 2) if the underlying mechanism of expectancy remains the same whether placebo treatment is given alone or in conjunction with active treatment. The results indicate that although verum acupuncture + high expectation and sham acupuncture + high expectation induced subjective reports of analgesia of equal magnitude, fMRI analysis showed that verum acupuncture produced greater fMRI signal decrease in pain related brain regions during application of calibrated heat pain stimuli on the right arm. We believe our study provides brain imaging evidence for the existence of different mechanisms underlying acupuncture analgesia and expectancy evoked placebo analgesia. Our results also suggest that the brain network involved in expectancy may vary under different treatment situations (verum and sham acupuncture treatment).National Center for Complementary and Alternative Medicine (U.S.) (PO1-AT002048)National Center for Complementary and Alternative Medicine (U.S.) (R21AT00949
    corecore