11,131 research outputs found

    The Sulzer Hip Replacement Recall Crisis: A Patient\u27s Perspective

    Get PDF
    This case discusses a product recall that resulted from a manufacturing defect and the degree to which the company distributed accurate and timely information to affected patients. More specifically, the case examines the crisis communication of Sulzer Orthopedics and its efforts to negotiate the interests of various stakeholders, while limiting liability. Written from the perspective of a patient, the case raises interesting questions regarding organizational duties related to product liability. It also provides valuable insights into how organizational communication may have both short- and long-term effects on its relationship with patients and physicians, among others

    Solitary Matter Waves in Combined Linear and Nonlinear Potentials: Detection, Stability, and Dynamics

    Full text link
    We study statically homogeneous Bose-Einstein condensates with spatially inhomogeneous interactions and outline an experimental realization of compensating linear and nonlinear potentials that can yield constant-density solutions. We illustrate how the presence of a step in the nonlinearity coefficient can only be revealed dynamically and consider, in particular, how to reveal it by exploiting the inhomogeneity of the sound speed with a defect-dragging experiment. We conduct computational experiments and observe the spontaneous emergence of dark solitary waves. We use effective-potential theory to perform a detailed analytical investigation of the existence and stability of solitary waves in this setting, and we corroborate these results computationally using a Bogoliubov-de Gennes linear stability analysis. We find that dark solitary waves are unstable for all step widths, whereas bright solitary waves can become stable through a symmetry-breaking bifurcation as one varies the step width. Using phase-plane analysis, we illustrate the scenarios that permit this bifurcation and explore the dynamical outcomes of the interaction between the solitary wave and the step.Comment: 7 pages (published version), 4 figure

    Hamiltonian mappings and circle packing phase spaces

    Get PDF
    We introduce three area preserving maps with phase space structures which resemble circle packings. Each mapping is derived from a kicked Hamiltonian system with one of three different phase space geometries (planar, hyperbolic or spherical) and exhibits an infinite number of coexisting stable periodic orbits which appear to `pack' the phase space with circular resonances.Comment: 23 pages including 12 figures, REVTEX

    Polarization proximity effect in isolator crystal pairs

    Full text link
    We experimentally studied the polarization dynamics (orientation and ellipticity) of near infrared light transmitted through magnetooptic Yttrium Iron Garnet crystal pairs using a modified balanced detection scheme. When the pair separation is in the sub-millimeter range, we observed a proximity effect in which the saturation field is reduced by up to 20%. 1D magnetostatic calculations suggest that the proximity effect originates from magnetostatic interactions between the dipole moments of the isolator crystals. This substantial reduction of the saturation field is potentially useful for the realization of low-power integrated magneto-optical devices.Comment: submitted to Optics Letter

    Small Aircraft Transportation System Concept and Technologies

    Get PDF
    This paper summarizes both the vision and the early public-private collaborative research for the Small Aircraft Transportation System (SATS). The paper outlines an operational definition of SATS, describes how SATS conceptually differs from current air transportation capabilities, introduces four SATS operating capabilities, and explains the relation between the SATS operating capabilities and the potential for expanded air mobility. The SATS technology roadmap encompasses on-demand, widely distributed, point-to-point air mobility, through hired-pilot modes in the nearer-term, and through self-operated user modes in the farther-term. The nearer-term concept is based on aircraft and airspace technologies being developed to make the use of smaller, more widely distributed community reliever and general aviation airports and their runways more useful in more weather conditions, in commercial hired-pilot service modes. The farther-term vision is based on technical concepts that could be developed to simplify or automate many of the operational functions in the aircraft and the airspace for meeting future public transportation needs, in personally operated modes. NASA technology strategies form a roadmap between the nearer-term concept and the farther-term vision. This paper outlines a roadmap for scalable, on-demand, distributed air mobility technologies for vehicle and airspace systems. The audiences for the paper include General Aviation manufacturers, small aircraft transportation service providers, the flight training industry, airport and transportation authorities at the Federal, state and local levels, and organizations involved in planning for future National Airspace System advancements

    Quantum and classical chaos for a single trapped ion

    Get PDF
    In this paper we investigate the quantum and classical dynamics of a single trapped ion subject to nonlinear kicks derived from a periodic sequence of Guassian laser pulses. We show that the classical system exhibits diffusive growth in the energy, or 'heating', while quantum mechanics suppresses this heating. This system may be realized in current single trapped-ion experiments with the addition of near-field optics to introduce tightly focussed laser pulses into the trap.Comment: 8 pages, REVTEX, 8 figure

    Quench Crucibles Reinforced with Metal

    Get PDF
    Improved crucibles consisting mainly of metal-reinforced ceramic ampules have been developed for use in experiments in which material specimens are heated in the crucibles to various high temperatures, then quenched by, for example, plunging the crucibles into water at room temperature. In a traditional quench crucible, the gap between the ampule and the metal cartridge impedes the transfer of heat to such a degree that the quench rate (the rate of cooling of the specimen) can be too low to produce the desired effect in the specimen. One can increase the quench rate by eliminating the metal cartridge to enable direct quenching of the ampule, but then the thermal shock of direct quenching causes cracking of the ampule. In a quench crucible of the present improved type, there is no gap and no metal cartridge in the traditional sense. Instead, there is an overlay of metal in direct contact with the ampule, as shown on the right side of the figure. Because there is no gap between the metal overlay and the ampule, the heat-transfer rate can be much greater than it is in a traditional quench crucible. The metal overlay also reinforces the ampule against cracking

    High-Temperature Crystal-Growth Cartridge Tubes Made by VPS

    Get PDF
    Cartridge tubes for use in a crystal growth furnace at temperatures as high as 1,600 deg. C have been fabricated by vacuum plasma spraying (VPS). These cartridges consist mainly of an alloy of 60 weight percent molybdenum with 40 weight percent rhenium, made from molybdenum powder coated with rhenium. This alloy was selected because of its high melting temperature (approximately equal.2,550 C) and because of its excellent ductility at room temperature. These cartridges are intended to supplant tungsten/nickel-alloy cartridges, which cannot be used at temperatures above approximately equal 1,300 C

    Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement

    Get PDF
    Optogenetics holds great promise for both the dissection of neural circuits and the evaluation of theories centered on the temporal organizing properties of oscillations that underpin cognition. To date, no studies have examined the efficacy of optogenetic stimulation for altering hippocampal oscillations in freely moving wild-type rats, or how these alterations would affect performance on behavioral tasks. Here, we used an AAV virus to express ChR2 in the medial septum (MS) of wild-type rats, and optically stimulated septal neurons at 6 Hz and 30 Hz. We measured the corresponding effects of these stimulations on the oscillations of the MS and hippocampal subfields CA1 and CA3 in three different contexts: (1) With minimal movement while the rats sat in a confined chamber; (2) Explored a novel open field; and (3) Learned and performed a T-maze behavioral task. While control yellow light stimulation did not affect oscillations, 6-Hz blue light septal stimulations altered hippocampal theta oscillations in a manner that depended on the animal's mobility and speed. While the 30 Hz blue light septal stimulations only altered theta frequency in CA1 while the rat had limited mobility, it robustly increased the amplitude of hippocampal signals at 30 Hz in both regions in all three recording contexts. We found that animals were more likely to make a correct choice during Day 1 of T-maze training during both MS stimulation protocols than during control stimulation, and that improved performance was independent of theta frequency alterations
    corecore