3,936 research outputs found

    Clinical presentation, auscultation recordings, ultrasonographic findings and treatment response of 12 adult cattle with chronic suppurative pneumonia: case study

    Get PDF
    Auscultation is considered the critical component of the veterinary clinical examination for the diagnosis of bovine respiratory disease but the accuracy with which adventitious sounds reflect underlying lung pathology remains largely unproven. Modern portable ultrasound machines provide the veterinary practitioner with an inexpensive, non-invasive tool with which to examine the pleural surfaces and superficial lung parenchyma. Simultaneous recording of sounds overlying normal lung and defined pathology allows critical assessment of auscultated sounds in the same animal removing confounding factors such as respiratory rate and thickness of the chest wall (body condition). Twelve cows, referred to the University of Edinburgh Veterinary School, were diagnosed with chronic suppurative pneumonia and enrolled into this prospective study to record and monitor lung sounds, ultrasonographic findings, and response to a standardised antibiotic treatment regimen. Most cows (8/12) had a normal rectal temperature on presentation but all cows had received antibiotic therapy at some time in the previous two weeks and six animals were receiving antibiotic treatment upon admission. All cattle were tachypnoeic (>40 breaths per minute) with frequent and productive coughing, halitosis, and a purulent nasal discharge most noticeable when the head was lowered. Ultrasonographic examination of the chest readily identified pathological changes consistent with severe lung pathology subsequently confirmed as chronic suppurative pneumonia in four cows at necropsy; eight cows recovered well after antibiotic treatment and were discharged two to six weeks after admission. It proved difficult to differentiate increased audibility of normal lung sounds due to tachypnoea from wheezes; coarse crackles were not commonly heard. In general, sounds were reduced in volume over consolidated lung relative to normal lung tissue situated dorsally. Rumen contraction sounds were commonly transmitted over areas of lung pathology. Trueperella (formerly Arcanobacterium) pyogenes was isolated from three of four lung tissue samples at necrospy. Treatment with procaine penicillin for 42 consecutive days resulted in marked improvement with return to normal appetite and improvement in body condition in 8 of 12 cows (67%) where lesions did not extend more than 10-15 cm above the level of the olecranon on both sides of the chest

    Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement

    Get PDF
    Optogenetics holds great promise for both the dissection of neural circuits and the evaluation of theories centered on the temporal organizing properties of oscillations that underpin cognition. To date, no studies have examined the efficacy of optogenetic stimulation for altering hippocampal oscillations in freely moving wild-type rats, or how these alterations would affect performance on behavioral tasks. Here, we used an AAV virus to express ChR2 in the medial septum (MS) of wild-type rats, and optically stimulated septal neurons at 6 Hz and 30 Hz. We measured the corresponding effects of these stimulations on the oscillations of the MS and hippocampal subfields CA1 and CA3 in three different contexts: (1) With minimal movement while the rats sat in a confined chamber; (2) Explored a novel open field; and (3) Learned and performed a T-maze behavioral task. While control yellow light stimulation did not affect oscillations, 6-Hz blue light septal stimulations altered hippocampal theta oscillations in a manner that depended on the animal's mobility and speed. While the 30 Hz blue light septal stimulations only altered theta frequency in CA1 while the rat had limited mobility, it robustly increased the amplitude of hippocampal signals at 30 Hz in both regions in all three recording contexts. We found that animals were more likely to make a correct choice during Day 1 of T-maze training during both MS stimulation protocols than during control stimulation, and that improved performance was independent of theta frequency alterations

    In situ studies of materials for high temperature CO2 capture and storage.

    Get PDF
    Carbon capture and storage (CCS) offers a possible solution to curb the CO2 emissions from stationary sources in the coming decades, considering the delays in shifting energy generation to carbon neutral sources such as wind, solar and biomass. The most mature technology for post-combustion capture uses a liquid sorbent, amine scrubbing. However, with the existing technology, a large amount of heat is required for the regeneration of the liquid sorbent, which introduces a substantial energy penalty. The use of alternative sorbents for CO2 capture, such as the CaO-CaCO3 system, has been investigated extensively in recent years. However there are significant problems associated with the use of CaO based sorbents, the most challenging one being the deactivation of the sorbent material. When sorbents such as natural limestone are used, the capture capacity of the solid sorbent can fall by as much as 90 mol% after the first 20 carbonation-regeneration cycles. In this study a variety of techniques were employed to understand better the cause of this deterioration from both a structural and morphological standpoint. X-ray and neutron PDF studies were employed to understand better the local surface and interfacial structures formed upon reaction, finding that after carbonation the surface roughness is decreased for CaO. In situ synchrotron X-ray diffraction studies showed that carbonation with added steam leads to a faster and more complete conversion of CaO than under conditions without steam, as evidenced by the phases seen at different depths within the sample. Finally, in situ X-ray tomography experiments were employed to track the morphological changes in the sorbents during carbonation, observing directly the reduction in porosity and increase in tortuosity of the pore network over multiple calcination reactions

    Novel Bayesian Networks for Genomic Prediction of Developmental Traits in Biomass Sorghum.

    Get PDF
    The ability to connect genetic information between traits over time allow Bayesian networks to offer a powerful probabilistic framework to construct genomic prediction models. In this study, we phenotyped a diversity panel of 869 biomass sorghum (Sorghum bicolor (L.) Moench) lines, which had been genotyped with 100,435 SNP markers, for plant height (PH) with biweekly measurements from 30 to 120 days after planting (DAP) and for end-of-season dry biomass yield (DBY) in four environments. We evaluated five genomic prediction models: Bayesian network (BN), Pleiotropic Bayesian network (PBN), Dynamic Bayesian network (DBN), multi-trait GBLUP (MTr-GBLUP), and multi-time GBLUP (MTi-GBLUP) models. In fivefold cross-validation, prediction accuracies ranged from 0.46 (PBN) to 0.49 (MTr-GBLUP) for DBY and from 0.47 (DBN, DAP120) to 0.75 (MTi-GBLUP, DAP60) for PH. Forward-chaining cross-validation further improved prediction accuracies of the DBN, MTi-GBLUP and MTr-GBLUP models for PH (training slice: 30-45 DAP) by 36.4-52.4% relative to the BN and PBN models. Coincidence indices (target: biomass, secondary: PH) and a coincidence index based on lines (PH time series) showed that the ranking of lines by PH changed minimally after 45 DAP. These results suggest a two-level indirect selection method for PH at harvest (first-level target trait) and DBY (second-level target trait) could be conducted earlier in the season based on ranking of lines by PH at 45 DAP (secondary trait). With the advance of high-throughput phenotyping technologies, our proposed two-level indirect selection framework could be valuable for enhancing genetic gain per unit of time when selecting on developmental traits

    Focus on vulnerable populations and promoting equity in health service utilization ––an analysis of visitor characteristics and service utilization of the Chinese community health service

    Get PDF
    Background Community health service in China is designed to provide a convenient and affordable primary health service for the city residents, and to promote health equity. Based on data from a large national study of 35 cities across China, we examined the characteristics of the patients and the utilization of community health institutions (CHIs), and assessed the role of community health service in promoting equity in health service utilization for community residents. Methods Multistage sampling method was applied to select 35 cities in China. Four CHIs were randomly chosen in every district of the 35 cities. A total of 88,482 visitors to the selected CHIs were investigated by using intercept survey method at the exit of the CHIs in 2008, 2009, 2010, and 2011. Descriptive analyses were used to analyze the main characteristics (gender, age, and income) of the CHI visitors, and the results were compared with that from the National Health Services Survey (NHSS, including CHIs and higher levels of hospitals). We also analyzed the service utilization and the satisfactions of the CHI visitors. Results The proportions of the children (2.4%) and the elderly (about 22.7%) were lower in our survey than those in NHSS (9.8% and 38.8% respectively). The proportion of the low-income group (26.4%) was apparently higher than that in NHSS (12.5%). The children group had the lowest satisfaction with the CHIs than other age groups. The satisfaction of the low-income visitors was slightly higher than that of the higher-income visitors. The utilization rate of public health services was low in CHIs. Conclusions The CHIs in China appears to fulfill the public health target of uptake by vulnerable populations, and may play an important role in promoting equity in health service utilization. However, services for children and the elderly should be strengthened

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the γ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3′-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3′-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3′-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. © 2008 Garforth et al

    Associations of Vitamin D with Inter- and Intra-Muscular Adipose Tissue and Insulin Resistance in Women with and without Polycystic Ovary Syndrome

    Get PDF
    Low vitamin D and insulin resistance are common in polycystic ovary syndrome (PCOS) and associated with higher inter- and intra-muscular adipose tissue (IMAT). We investigated associations between vitamin D, IMAT and insulin resistance in a cross-sectional study of 40 women with PCOS and 30 women without PCOS, and pre- and post-exercise in a 12-week intervention in 16 overweight participants (10 with PCOS and six without PCOS). A non-classical body mass index (BMI) threshold was used to differentiate lean and overweight women (BMI ≥ 27 kg/m²). Measurements included plasma 25-hydroxyvitamin D (25OHD), insulin resistance (glucose infusion rate (GIR; mg/m²/min), fasting glucose and insulin, and glycated haemoglobin), visceral fat, mid-thigh IMAT (computed tomography) and total body fat (dual-energy X-ray absorptiometry). Women with both PCOS and low 25OHD levels had the lowest GIR (all p < 0.05). Higher IMAT was associated with lower 25OHD (B = -3.95; 95% CI -6.86, -1.05) and GIR (B = -21.3; 95% CI -37.16, -5.44) in women with PCOS. Overweight women with pre-exercise 25OHD ≥30 nmol/L had significant increases in GIR, and decreases in total and visceral fat (all p < 0.044), but no associations were observed when stratified by PCOS status. Women with PCOS and low 25OHD levels have increased insulin resistance which may be partly explained by higher IMAT. Higher pre-training 25OHD levels may enhance exercise-induced changes in body composition and insulin resistance in overweight women

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells

    Tunable magnetic exchange interactions in manganese-doped inverted core/shell ZnSe/CdSe nanocrystals

    Full text link
    Magnetic doping of semiconductor nanostructures is actively pursued for applications in magnetic memory and spin-based electronics. Central to these efforts is a drive to control the interaction strength between carriers (electrons and holes) and the embedded magnetic atoms. In this respect, colloidal nanocrystal heterostructures provide great flexibility via growth-controlled `engineering' of electron and hole wavefunctions within individual nanocrystals. Here we demonstrate a widely tunable magnetic sp-d exchange interaction between electron-hole excitations (excitons) and paramagnetic manganese ions using `inverted' core-shell nanocrystals composed of Mn-doped ZnSe cores overcoated with undoped shells of narrower-gap CdSe. Magnetic circular dichroism studies reveal giant Zeeman spin splittings of the band-edge exciton that, surprisingly, are tunable in both magnitude and sign. Effective exciton g-factors are controllably tuned from -200 to +30 solely by increasing the CdSe shell thickness, demonstrating that strong quantum confinement and wavefunction engineering in heterostructured nanocrystal materials can be utilized to manipulate carrier-Mn wavefunction overlap and the sp-d exchange parameters themselves.Comment: To appear in Nature Materials; 18 pages, 4 figures + Supp. Inf
    corecore