7,948 research outputs found
Self-Assembly of Infinite Structures
We review some recent results related to the self-assembly of infinite
structures in the Tile Assembly Model. These results include impossibility
results, as well as novel tile assembly systems in which shapes and patterns
that represent various notions of computation self-assemble. Several open
questions are also presented and motivated
Intrinsic Universality in Self-Assembly
We show that the Tile Assembly Model exhibits a strong notion of universality
where the goal is to give a single tile assembly system that simulates the
behavior of any other tile assembly system. We give a tile assembly system that
is capable of simulating a very wide class of tile systems, including itself.
Specifically, we give a tile set that simulates the assembly of any tile
assembly system in a class of systems that we call \emph{locally consistent}:
each tile binds with exactly the strength needed to stay attached, and that
there are no glue mismatches between tiles in any produced assembly.
Our construction is reminiscent of the studies of \emph{intrinsic
universality} of cellular automata by Ollinger and others, in the sense that
our simulation of a tile system by a tile system represents each tile
in an assembly produced by by a block of tiles in , where
is a constant depending on but not on the size of the assembly
produces (which may in fact be infinite). Also, our construction improves on
earlier simulations of tile assembly systems by other tile assembly systems (in
particular, those of Soloveichik and Winfree, and of Demaine et al.) in that we
simulate the actual process of self-assembly, not just the end result, as in
Soloveichik and Winfree's construction, and we do not discriminate against
infinite structures. Both previous results simulate only temperature 1 systems,
whereas our construction simulates tile assembly systems operating at
temperature 2
Self-Assembly of Arbitrary Shapes Using RNAse Enzymes: Meeting the Kolmogorov Bound with Small Scale Factor (extended abstract)
We consider a model of algorithmic self-assembly of geometric shapes out of
square Wang tiles studied in SODA 2010, in which there are two types of tiles
(e.g., constructed out of DNA and RNA material) and one operation that destroys
all tiles of a particular type (e.g., an RNAse enzyme destroys all RNA tiles).
We show that a single use of this destruction operation enables much more
efficient construction of arbitrary shapes. In particular, an arbitrary shape
can be constructed using an asymptotically optimal number of distinct tile
types (related to the shape's Kolmogorov complexity), after scaling the shape
by only a logarithmic factor. By contrast, without the destruction operation,
the best such result has a scale factor at least linear in the size of the
shape, and is connected only by a spanning tree of the scaled tiles. We also
characterize a large collection of shapes that can be constructed efficiently
without any scaling
Nurses\u27 Alumnae Association Bulletin, September 1958
Committee Reports
Digest of Alumnae Meetings
Graduation Awards - 1957
List of Wrong Addresses
Marriages
Necrology
New Arrivals
Physical Advances at Jefferson
President\u27s Message
School of Nursing Repor
- …
