15 research outputs found

    Search for gluino mediated bottom- and top-squark production in multijet final states in pp collisions at 8 TeV

    No full text
    A search for supersymmetry is presented based on events with large missing transverse energy, no isolated electron or muon, and at least three jets with one or more identified as a bottom-quark jet. A simultaneous examination is performed of the numbers of events in exclusive bins of the scalar sum of jet transverse momentum values, missing transverse energy, and bottom-quark jet multiplicity. The sample, corresponding to an integrated luminosity of 19.4 fb−1, consists of proton–proton collision data recorded at a center-of-mass energy of 8 TeV with the CMS detector at the LHC in 2012. The observed numbers of events are found to be consistent with the standard model expectation, which is evaluated with control samples in data. The results are interpreted in the context of two simplified supersymmetric scenarios in which gluino pair production is followed by the decay of each gluino to an undetected lightest supersymmetric particle and either a bottom or top quark–antiquark pair, characteristic of gluino mediated bottom- or top-squark production. Using the production cross section calculated to next-to-leading-order plus next-to-leading-logarithm accuracy, and in the limit of a massless lightest supersymmetric particle, we exclude gluinos with masses below 1170 GeV and 1020 GeV for the two scenarios, respectively

    Search for new phenomena in monophoton final states in proton–proton collisions at sqrt(s)=8 TeV

    No full text

    Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions

    No full text
    Measurements of two- and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 31 nb−1, were collected during the 2013 LHC pPb run at a nucleon–nucleon center-of-mass energy of 5.02 TeV by the CMS experiment. The results are compared to 2.76 TeV semi-peripheral PbPb collision data, collected during the 2011 PbPb run, covering a similar range of particle multiplicities. The observed correlations are characterized by the near-side (|Δφ|≈0) associated pair yields and the azimuthal anisotropy Fourier harmonics (vn). The second-order (v2) and third-order (v3) anisotropy harmonics are extracted using the two-particle azimuthal correlation technique. A four-particle correlation method is also applied to obtain the value of v2 and further explore the multi-particle nature of the correlations. Both associated pair yields and anisotropy harmonics are studied as a function of particle multiplicity and transverse momentum. The associated pair yields, the four-particle v2, and the v3 become apparent at about the same multiplicity. A remarkable similarity in the v3 signal as a function of multiplicity is observed between the pPb and PbPb systems. Predictions based on the color glass condensate and hydrodynamic models are compared to the experimental results

    Search for natural supersymmetry in events with top quark pairs and photons in pp collisions at sqrts=sqrt{s} = 8 TeV

    No full text

    Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation between the lepton and the missing transverse momentum in proton-proton collisions at sqrts=sqrt{s} = 13 TeV. Search for supersymmetry in events with one lepton and multiple jets exploiting the angular correlation between the lepton and the missing transverse momentum in proton-proton collisions at sqrts=sqrt{s} = 13 TeV

    No full text

    Measurement of the Υ(1S), Υ(2S), and Υ(3S) cross sections in pp collisions at sqrt(s) = 7 TeV

    No full text
    The Υ(1S), Υ(2S), and Υ(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 ± 1.4 inverse picobarns of proton-proton collisions at √s = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the Υ transverse momentum range pΥt< 50GeV and rapidity range |yΥ| < 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are σ(pp→Υ(1S)X).B(Υ(1S)→μ+μ−)=(8.55±0.05+0.56−0.50±0.34)nb, σ(pp→Υ(2S)X).B(Υ(2S)→μ+μ−)=(2.21±0.03+0.16−0.14±0.09)nb, σ(pp→Υ(3S)X).B(Υ(3S)→μ+μ−)=(1.11±0.02+0.10−0.08±0.04)nb, where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements

    Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states

    No full text
    Results are reported from a search for non-standard-model Higgs boson decays to pairs of new light bosons, each of which decays into the μ+μ− final state. The new bosons may be produced either promptly or via a decay chain. The data set corresponds to an integrated luminosity of 5.3 fb−1 of proton–proton collisions at sqrt(s)=7 TeV, recorded by the CMS experiment at the LHC in 2011. Such Higgs boson decays are predicted in several scenarios of new physics, including supersymmetric models with extended Higgs sectors or hidden valleys. Thus, the results of the search are relevant for establishing whether the new particle observed in Higgs boson searches at the LHC has the properties expected for a standard model Higgs boson. No excess of events is observed with respect to the yields expected from standard model processes. A model-independent upper limit of 0.86±0.06 fb on the product of the cross section times branching fraction times acceptance is obtained. The results, which are applicable to a broad spectrum of new physics scenarios, are compared with the predictions of two benchmark models as functions of a Higgs boson mass larger than 86 GeV/c2 and of a new light boson mass within the range 0.25–3.55 GeV/c2

    Search for long-lived particles in events with photons and missing energy in proton–proton collisions at sqrt(s)=7 TeV

    No full text
    Results are presented from a search for long-lived neutralinos decaying into a photon and an invisible particle, a signature associated with gauge-mediated supersymmetry breaking in supersymmetric models. The analysis is based on a 4.9 inverse femtobarn sample of proton-proton collisions at √s = 7 TeV, collected with the CMS detector at the LHC. The missing transverse energy and the time of arrival of the photon at the electromagnetic calorimeter are used to search for an excess of events over the expected background. No significant excess is observed, and lower limits at the 95% confidence level are obtained on the mass of the lightest neutralino, m(neutralino) > 220 GeV (for c tau 6000 mm (for m(neutralino) < 150 GeV)

    Search for anomalous production of highly boosted Z bosons decaying to μ+μ− in proton–proton collisions at sqrt(s)=7 TeV

    No full text
    Results are reported from a search for the anomalous production of highly boosted Z bosons with large transverse momentum and decaying to μ+μ-. Such Z bosons may be produced in the decays of new heavy particles. The search uses pp collision data at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 5.0 fb−1 recorded with the CMS detector. The shape of the observed transverse momentum distribution of Z bosons is consistent with standard model expectations. Constraints are obtained on models predicting the production of excited quarks decaying via electroweak processes. Assuming a compositeness scale that is equal to the excited quark mass as well as transition coupling strengths between Z bosons and excited quarks that are equal to standard model couplings to quarks, masses of excited quarks below 1.94 TeV are excluded at the 95% confidence level. For excited quark production via a novel contact interaction, masses below 2.22 TeV are excluded, even if the excited quarks do not couple to gluon

    Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV

    No full text
    A search has been made for massive resonances decaying into a quark and a vector boson, qW or qZ, or a pair of vector bosons, WW, WZ, or ZZ, where each vector boson decays to hadronic final states. This search is based on a data sample corresponding to an integrated luminosity of 5.0 fb−1 of proton–proton collisions collected in the CMS experiment at the LHC in 2011 at a center-of-mass energy of 7 TeV. For sufficiently heavy resonances the decay products of each vector boson are merged into a single jet, and the event effectively has a dijet topology. The background from QCD dijet events is reduced using recently developed techniques that resolve jet substructure. A 95% CL lower limit is set on the mass of excited quark resonances decaying into qW (qZ) at 2.38 TeV (2.15 TeV) and upper limits are set on the cross section for resonances decaying to qW, qZ, WW, WZ, or ZZ final states
    corecore