33,094 research outputs found
Taxonomic revision of lizards from the Paleocene deposits of the Qianshan Basin, Anhui, China
Although the Late Cretaceous lizard fauna of China and Mongolia is relatively well-known, information on Paleocene lizards from the same region is currently limited. Several species of lizards have been reported from the Paleocene Wanghudun and Doumu formations of Qianshan Basin on the basis of fragmentary specimens, namely Agama sinensis Hou, 1974, Anhuisaurus huainanensis Hou, 1974, Anqingosaurus brevicephalus Hou, 1976, Changjiangosaurus huananensis Hou, 1976, Qianshanosaurus huangpuensis Hou, 1974, and Tinosaurus doumuensis Hou, 1974. In this paper, we review all the reported material of these taxa with the aid of new technology, including CT scanning, and according to current views of squamate relationships and classification. Revised descriptions and classifications are given for each taxon, leading to changes in our understanding of faunal composition. This, in turn, reveals greater morphological and ecological diversity among the Paleocene lizards of the Qianshan
Basin, including the occurrence of a varaniform (IVPP V 22767), and the reinterpretation of Anqingosaurus as a possible burrower. Further work on the Paleocene Qianshan lizards is ongoing and the discovery of new specimens may help to solve the puzzles these strange lizards have posed
Ab initio prediction of the mechanical properties of alloys: The case of Ni/Mn-doped ferromagnetic Fe
First-principles alloy theory, formulated within the exact muffin-tin
orbitals method in combination with the coherent-potential approximation, is
used to study the mechanical properties of ferromagnetic body-centered cubic
(bcc) FeM alloys (M=Mn or Ni, ). We consider
several physical parameters accessible from \emph{ab initio} calculations and
their combinations in various phenomenological models to compare the effect of
Mn and Ni on the properties of Fe. Alloying is found to slightly alter the
lattice parameters and produce noticeable influence on elastic moduli. Both Mn
and Ni decrease the surface energy and the unstable stacking fault energy
associated with the surface facet and the
slip system, respectively. Nickel is found to produce larger effect on the
planar fault energies than Mn. The semi-empirical ductility criteria by Rice
and Pugh consistently predict that Ni enhances the ductility of Fe but give
contradictory results in the case of Mn doping. The origin of the discrepancy
between the two criteria is discussed and an alternative measure of the
ductile-brittle behavior based on the theoretical cleavage strength and
single-crystal shear modulus is proposed.Comment: 14 pages, 11 figure
The Ammann-Beenker tilings revisited
This paper introduces two tiles whose tilings form a one-parameter family of
tilings which can all be seen as digitization of two-dimensional planes in the
four-dimensional Euclidean space. This family contains the Ammann-Beenker
tilings as the solution of a simple optimization problem.Comment: 7 pages, 4 figure
Inbuilt Mechanisms for Overcoming Functional Problems Inherent in Hepatic Microlobular Structure
This paper is funded by an MRC/EPSRC Discipline Bridging Initiative Grant (G0502256-77947) to W. Wan
Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces
Interlimb transfer of a novel dynamic force has been well documented. It has also been shown that unimanual adaptation to opposing novel environments is possible if they are associated with different workspaces. The main aim of this study was to test if adaptation to opposing velocity dependent viscous forces with one arm could improve the initial performance of the other arm. The study also examined whether this interlimb transfer occurred across an extrinsic, spatial, coordinative system or an intrinsic, joint based, coordinative system. Subjects initially adapted to opposing viscous forces separated by target location. Our measure of performance was the correlation between the speed profiles of each movement within a force condition and an ‘average’ trajectory within null force conditions. Adaptation to the opposing forces was seen during initial acquisition with a significantly improved coefficient in epoch eight compared to epoch one. We then tested interlimb transfer from the dominant to non-dominant arm (D → ND) and vice-versa (ND → D) across either an extrinsic or intrinsic coordinative system. Interlimb transfer was only seen from the dominant to the non-dominant limb across an intrinsic coordinative system. These results support previous studies involving adaptation to a single dynamic force but also indicate that interlimb transfer of multiple opposing states is possible. This suggests that the information available at the level of representation allowing interlimb transfer can be more intricate than a general movement goal or a single perceived directional error
Understanding the nature of "superhard graphite"
Numerous experiments showed that on cold compression graphite transforms into
a new superhard and transparent allotrope. Several structures with different
topologies have been proposed for this phase. While experimental data are
consistent with these models, the only way to solve this puzzle is to find
which structure is kinetically easiest to form. Using state-of-the-art
molecular-dynamics transition path sampling simulations, we investigate kinetic
pathways of the pressure-induced transformation of graphite to various
superhard candidate structures. Unlike hitherto applied methods for elucidating
nature of superhard graphite, transition path sampling realistically models
nucleation events necessary for physically meaningful transformation kinetics.
We demonstrate that nucleation mechanism and kinetics lead to -carbon as the
final product. -carbon, initially competitor to -carbon, is ruled out by
phase growth. Bct-C structure is not expected to be produced by cold
compression due to less probable nucleation and higher barrier of formation
An improved version of white matter method for correction of non-uniform intensity in MR images: application to the quantification of rates of brain atrophy in Alzheimer's disease and normal aging
A fully automated 3D version of the so-called white matter method for correcting intensity non-uniformity in MR T1-weighted neuro images is presented. The algorithm is an extension of the original work published previously. The major part of the extension was the development of a fully automated method for the generation of the reference points. In the design of this method, a number of measures were introduced to minimize the effects of possible inclusion of non-white matter voxels in the selection process. The correction process has been made iterative. PI drawback of this approach is an increased cost in computational time. The algorithm has been tested on T1-weighted MR images acquired from a longitudinal study involving elderly subjects and people with probable Alzheimer's disease. More quantitative measures were used for the evaluation of the algorithm's performance. Highly satisfactory correction results have been obtained for images with extensive intensity non-uniformity either present in raw data or added artificially. With intensity correction, improved accuracy in the measurement of the rate of brain atrophy in Alzheimer's patients as well as in elderly people due to normal aging has been achieved
A Common Variant Associated with Dyslexia Reduces Expression of the KIAA0319 Gene
Numerous genetic association studies have implicated the KIAA0319 gene on human chromosome 6p22 in dyslexia susceptibility. The causative variant(s) remains unknown but may modulate gene expression, given that (1) a dyslexia-associated haplotype has been implicated in the reduced expression of KIAA0319, and (2) the strongest association has been found for the region spanning exon 1 of KIAA0319. Here, we test the hypothesis that variant(s) responsible for reduced KIAA0319 expression resides on the risk haplotype close to the gene's transcription start site. We identified seven single-nucleotide polymorphisms on the risk haplotype immediately upstream of KIAA0319 and determined that three of these are strongly associated with multiple reading-related traits. Using luciferase-expressing constructs containing the KIAA0319 upstream region, we characterized the minimal promoter and additional putative transcriptional regulator regions. This revealed that the minor allele of rs9461045, which shows the strongest association with dyslexia in our sample (max p-value = 0.0001), confers reduced luciferase expression in both neuronal and non-neuronal cell lines. Additionally, we found that the presence of this rs9461045 dyslexia-associated allele creates a nuclear protein-binding site, likely for the transcriptional silencer OCT-1. Knocking down OCT-1 expression in the neuronal cell line SHSY5Y using an siRNA restores KIAA0319 expression from the risk haplotype to nearly that seen from the non-risk haplotype. Our study thus pinpoints a common variant as altering the function of a dyslexia candidate gene and provides an illustrative example of the strategic approach needed to dissect the molecular basis of complex genetic traits
- …
