592 research outputs found
Specific protein-protein binding in many-component mixtures of proteins
Proteins must bind to specific other proteins in vivo in order to function.
The proteins must bind only to one or a few other proteins of the of order a
thousand proteins typically present in vivo. Using a simple model of a protein,
specific binding in many component mixtures is studied. It is found to be a
demanding function in the sense that it demands that the binding sites of the
proteins be encoded by long sequences of bits, and the requirement for specific
binding then strongly constrains these sequences. This is quantified by the
capacity of proteins of a given size (sequence length), which is the maximum
number of specific-binding interactions possible in a mixture. This calculation
of the maximum number possible is in the same spirit as the work of Shannon and
others on the maximum rate of communication through noisy channels.Comment: 13 pages, 3 figures (changes for v2 mainly notational - to be more in
line with notation in information theory literature
Flory-Huggins theory for athermal mixtures of hard spheres and larger flexible polymers
A simple analytic theory for mixtures of hard spheres and larger polymers
with excluded volume interactions is developed. The mixture is shown to exhibit
extensive immiscibility. For large polymers with strong excluded volume
interactions, the density of monomers at the critical point for demixing
decreases as one over the square root of the length of the polymer, while the
density of spheres tends to a constant. This is very different to the behaviour
of mixtures of hard spheres and ideal polymers, these mixtures although even
less miscible than those with polymers with excluded volume interactions, have
a much higher polymer density at the critical point of demixing. The theory
applies to the complete range of mixtures of spheres with flexible polymers,
from those with strong excluded volume interactions to ideal polymers.Comment: 9 pages, 4 figure
A coil-globule transition of a semiflexible polymer driven by the addition of spherical particles
The phase behaviour of a single large semiflexible polymer immersed in a
suspension of spherical particles is studied. All interactions are simple
excluded volume interactions and the diameter of the spherical particles is an
order of magnitude larger than the diameter of the polymer. The spherical
particles induce a quite long ranged depletion attraction between the segments
of the polymer and this induces a continuous coil-globule transition in the
polymer. This behaviour gives an indication of the condensing effect of
macromolecular crowding on DNA.Comment: 12 pages, 4 figure
Phase separation in mixtures of colloids and long ideal polymer coils
Colloidal suspensions with free polymer coils which are larger than the
colloidal particles are considered. The polymer-colloid interaction is modeled
by an extension of the Asakura-Oosawa model. Phase separation occurs into
dilute and dense fluid phases of colloidal particles when polymer is added. The
critical density of this transition tends to zero as the size of the polymer
coils diverges.Comment: 5 pages, 3 figure
Homogeneous nucleation of a non-critical phase near a continuous phase transition
Homogeneous nucleation of a new phase near a second, continuous, transition,
is considered. The continuous transition is in the metastable region associated
with the first-order phase transition, one of whose coexisting phases is
nucleating. Mean-field calculations show that as the continuous transition is
approached, the size of the nucleus varies as the response function of the
order parameter of the continuous transition. This response function diverges
at the continuous transition, as does the temperature derivative of the free
energy barrier to nucleation. This rapid drop of the barrier as the continuous
transition is approached means that the continuous transition acts to reduce
the barrier to nucleation at the first-order transition. This may be useful in
the crystallisation of globular proteins.Comment: 6 pages, 1 figur
Interfacial tension and nucleation in mixtures of colloids and long ideal polymer coils
Mixtures of ideal polymers with hard spheres whose diameters are smaller than
the radius of gyration of the polymer, exhibit extensive immiscibility. The
interfacial tension between demixed phases of these mixtures is estimated, as
is the barrier to nucleation. The barrier is found to scale linearly with the
radius of the polymer, causing it to become large for large polymers. Thus for
large polymers nucleation is suppressed and phase separation proceeds via
spinodal decomposition, as it does in polymer blends.Comment: 4 pages (v2 includes discussion of the scaling of the interfacial
tension along the coexistence curve and its relation to the Ginzburg
criterion
Phase behaviour of a model of colloidal particles with a fluctuating internal state
Colloidal particles are not simple rigid particles, in general an isolated
particle is a system with many degrees of freedom in its own right, e.g., the
counterions around a charged colloidal particle.The behaviour of model
colloidal particles, with a simple phenomenological model to account for these
degrees of freedom, is studied. It is found that the interaction between the
particles is not pairwise additive. It is even possible that the interaction
between a triplet of particles is attractive while the pair interaction is
repulsive. When this is so the liquid phase is either stable only in a small
region of the phase diagram or absent altogether.Comment: 12 pages including 4 figure
Forward Flux Sampling for rare event simulations
Rare events are ubiquitous in many different fields, yet they are notoriously
difficult to simulate because few, if any, events are observed in a conventiona
l simulation run. Over the past several decades, specialised simulation methods
have been developed to overcome this problem. We review one recently-developed
class of such methods, known as Forward Flux Sampling. Forward Flux Sampling
uses a series of interfaces between the initial and final states to calculate
rate constants and generate transition paths, for rare events in equilibrium or
nonequilibrium systems with stochastic dynamics. This review draws together a
number of recent advances, summarizes several applications of the method and
highlights challenges that remain to be overcome.Comment: minor typos in the manuscript. J.Phys.:Condensed Matter (accepted for
publication
Long Cycles in a Perturbed Mean Field Model of a Boson Gas
In this paper we give a precise mathematical formulation of the relation
between Bose condensation and long cycles and prove its validity for the
perturbed mean field model of a Bose gas. We decompose the total density
into the number density of
particles belonging to cycles of finite length () and to
infinitely long cycles () in the thermodynamic limit. For
this model we prove that when there is Bose condensation,
is different from zero and identical to the condensate density. This is
achieved through an application of the theory of large deviations. We discuss
the possible equivalence of with off-diagonal long
range order and winding paths that occur in the path integral representation of
the Bose gas.Comment: 10 page
Interactions between proteins bound to biomembranes
We study a physical model for the interaction between general inclusions
bound to fluid membranes that possess finite tension, as well as the usual
bending rigidity. We are motivated by an interest in proteins bound to cell
membranes that apply forces to these membranes, due to either entropic or
direct chemical interactions. We find an exact analytic solution for the
repulsive interaction between two similar circularly symmetric inclusions. This
repulsion extends over length scales of order tens of nanometers, and contrasts
with the membrane-mediated contact attraction for similar inclusions on
tensionless membranes. For non circularly symmetric inclusions we study the
small, algebraically long-ranged, attractive contribution to the force that
arises. We discuss the relevance of our results to biological phenomena, such
as the budding of caveolae from cell membranes and the striations that are
observed on their coats.Comment: 22 pages, 2 figure
- …
