4,250 research outputs found
Hematopoietic stem cell transplantation in childhood: current status and perspectives
Hematopoietic stem cell transplantation is a treatment option for a large number of children with malignant and non-malignant diseases. The objective of this article is to present the current status of hematopoietic stem cell transplantation in the treatment of malignant hematological diseases in pediatrics, including results in Brazil, and future perspectives.O transplante de células-tronco hematopoéticas (TCTH) é uma opção terapêutica para um grande número de crianças com doenças malignas e não malignas. O objetivo deste artigo é apresentar a situação atual dos TCTH em pediatria para o tratamento de doenças hematológicas malignas, incluindo dados de nosso país e perspectivas futuras.UNIFESP Graacc Instituto de Oncologia PediátricaUNIFESP, Graacc Instituto de Oncologia PediátricaSciEL
Joining Forces of Bayesian and Frequentist Methodology: A Study for Inference in the Presence of Non-Identifiability
Increasingly complex applications involve large datasets in combination with
non-linear and high dimensional mathematical models. In this context,
statistical inference is a challenging issue that calls for pragmatic
approaches that take advantage of both Bayesian and frequentist methods. The
elegance of Bayesian methodology is founded in the propagation of information
content provided by experimental data and prior assumptions to the posterior
probability distribution of model predictions. However, for complex
applications experimental data and prior assumptions potentially constrain the
posterior probability distribution insufficiently. In these situations Bayesian
Markov chain Monte Carlo sampling can be infeasible. From a frequentist point
of view insufficient experimental data and prior assumptions can be interpreted
as non-identifiability. The profile likelihood approach offers to detect and to
resolve non-identifiability by experimental design iteratively. Therefore, it
allows one to better constrain the posterior probability distribution until
Markov chain Monte Carlo sampling can be used securely. Using an application
from cell biology we compare both methods and show that a successive
application of both methods facilitates a realistic assessment of uncertainty
in model predictions.Comment: Article to appear in Phil. Trans. Roy. Soc.
Graphics for uncertainty
Graphical methods such as colour shading and animation, which are widely available, can be very effective in communicating uncertainty. In particular, the idea of a ‘density strip’ provides a conceptually simple representation of a distribution and this is explored in a variety of settings, including a comparison of means, regression and models for contingency tables. Animation is also a very useful device for exploring uncertainty and this is explored particularly in the context of flexible models, expressed in curves and surfaces whose structure is of particular interest. Animation can further provide a helpful mechanism for exploring data in several dimensions. This is explored in the simple but very important setting of spatiotemporal data
Design and development of information systems for the geosciences: An application to the Middle East
Publisher's version archived with permission from publisher.
http://www.gulfpetrolink.net/publication/geoarabia.htmAs our understanding grows of how the Earth functions as a complex system of myriad
interrelated mechanisms, it becomes clear that a revolutionary and novel approach is
needed to study and understand it. In order to take advantage of an ever-growing
number of observations and large data sets and to employ them efficiently in
multidisciplinary studies aimed at solving earth system science problems, we are
developing a comprehensive Solid Earth Information System (SEIS). The complex
nature of the solid earth sciences raises serious challenges for geoscientists in their
quest to understand the nature and the dynamic mechanisms at work in the planet.
SEIS forms a first step in developing a broader and more comprehensive information
system for earth system sciences designed for the needs of the geoscientists of the 21st
century. In a way, SEIS is a step towards the Digital Earth. Application of SEIS to the
complex tectonics of the Middle East shows that information systems are crucial in
multidisciplinary research studies and open new avenues in research efforts. SEIS
includes an Internet module that provides open access to anyone interested.
Researchers as well as educators and students can access this knowledge and
information system at http://atlas.geo.cornell.edu
Adaptive Covariance Estimation with model selection
We provide in this paper a fully adaptive penalized procedure to select a
covariance among a collection of models observing i.i.d replications of the
process at fixed observation points. For this we generalize previous results of
Bigot and al. and propose to use a data driven penalty to obtain an oracle
inequality for the estimator. We prove that this method is an extension to the
matricial regression model of the work by Baraud
Estimating stellar oscillation-related parameters and their uncertainties with the moment method
The moment method is a well known mode identification technique in
asteroseismology (where `mode' is to be understood in an astronomical rather
than in a statistical sense), which uses a time series of the first 3 moments
of a spectral line to estimate the discrete oscillation mode parameters l and
m. The method, contrary to many other mode identification techniques, also
provides estimates of other important continuous parameters such as the
inclination angle alpha, and the rotational velocity v_e. We developed a
statistical formalism for the moment method based on so-called generalized
estimating equations (GEE). This formalism allows the estimation of the
uncertainty of the continuous parameters taking into account that the different
moments of a line profile are correlated and that the uncertainty of the
observed moments also depends on the model parameters. Furthermore, we set up a
procedure to take into account the mode uncertainty, i.e., the fact that often
several modes (l,m) can adequately describe the data. We also introduce a new
lack of fit function which works at least as well as a previous discriminant
function, and which in addition allows us to identify the sign of the azimuthal
order m. We applied our method to the star HD181558, using several numerical
methods, from which we learned that numerically solving the estimating
equations is an intensive task. We report on the numerical results, from which
we gain insight in the statistical uncertainties of the physical parameters
involved in the moment method.Comment: The electronic online version from the publisher can be found at
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2005.00487.
Maximizing the Conditional Expected Reward for Reaching the Goal
The paper addresses the problem of computing maximal conditional expected
accumulated rewards until reaching a target state (briefly called maximal
conditional expectations) in finite-state Markov decision processes where the
condition is given as a reachability constraint. Conditional expectations of
this type can, e.g., stand for the maximal expected termination time of
probabilistic programs with non-determinism, under the condition that the
program eventually terminates, or for the worst-case expected penalty to be
paid, assuming that at least three deadlines are missed. The main results of
the paper are (i) a polynomial-time algorithm to check the finiteness of
maximal conditional expectations, (ii) PSPACE-completeness for the threshold
problem in acyclic Markov decision processes where the task is to check whether
the maximal conditional expectation exceeds a given threshold, (iii) a
pseudo-polynomial-time algorithm for the threshold problem in the general
(cyclic) case, and (iv) an exponential-time algorithm for computing the maximal
conditional expectation and an optimal scheduler.Comment: 103 pages, extended version with appendices of a paper accepted at
TACAS 201
Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography
An edited version of this paper was published by the American Geophysical Union. Copyright 2000, AGU.
See also:
http://www.agu.org/pubs/crossref/2000/2000JB900024.shtml;
http://atlas.geo.cornell.edu/morocco/publications/calvert2000.htmA number of different geodynamic models have been proposed to explain the extension that occurred during the Miocene in the Alboran Sea region of the western Mediterranean despite the continued convergence and shortening of northern Africa and southern Iberia. In an effort to provide additional geophysical constraints on these models, we performed a local, regional, and teleseismic tomographic travel time inversion for the lithospheric and upper mantle velocity structure and earthquake locations beneath the Alboran region in an area of 800 x 800 km^2. We picked P and S arrival times from digital and analog seismograms recorded by 96 seismic stations in Morocco and Spain between 1989 and 1996 and combined them with arrivals carefully selected from local and global catalogs (1964-1998) to generate a starting data set containing over 100,000 arrival times. Our results indicate that a N-S line of intermediate depth earthquakes extending from crustal depths significantly inland from the southern Iberian coat to depths of over 100 km beneath the center of the Alboran Sea coincided with a W to E transition from high to low velocities imaged in the uppermost mantle. A high-velocity body, striking approximately NE-SW, is imaged to dip southeastwards from lithospheric depths beneath the low-velocity region to depths of ~350 km. Between 350 and 500 km the imaged velocity anomalies become more diffuse. However, pronounced high-velocity anomalies are again imaged at 600 km near an isolated cluster of deep earthquakes. In addition to standard tomographic methods of error assessment, the effects of systematic and random errors were assessed using block shifting and bootstrap resampling techniques, respectively. We interpret the upper mantle high-velocity anomalies as regions of colder mantle that originate from lithospheric depths. These observations, when combined with results from other studies, suggest that delamination of a continental lithosphere played an important role in the Neogene and Quaternary evolution of the region
Upper crustal velocity structure and basement morphology beneath the intracontinental Palmyride fold-thrust belt and north Arabian platform in Syria
An edited version of this paper was published in Geophysical Journal International by Blackwell Publishing. Copyright 1993, Blackwell Publishing.
See also:
http://www.blackwellpublishing.com/journal.asp?ref=0956-540X&site=1;
http://atlas.geo.cornell.edu/syria/seber_gji_1993.htmThe intracontinental Palmyride fold-thrust belt, which is the site of an inverted Mesozoic rift, is sandwiched between two crustal blocks, the Aleppo plateau in the north and the Rutbah uplift in the south. The 400 x 100 km belt merges with the Dead Sea fault system in the southwest and gradually ends near the Euphrates depression in the northeast. Very dense (i.e., 100 m geophone spacing), reversed and multifold seismic refraction profiling was carried out to map approximately the upper 15 km of the crust in the early 1970s. These refraction data are utilized to model sedimentary rock thickness, seismic velocity, and basement morphology. Extensive data coverage also enables identification of the major faults of the region. A 2-D ray tracing technique is used in the modeling. Interpretation of these data indicates that five distinct velocity layers characterize the upper crust of the northern Arabian platform in Syria. The P-wave velocities within these layers are (in km s-1): 2.0-2.8, 4.0-4.4, 5.2-5.3 , 5.5-5.7, corresponding to sedimentary rocks from Quaternary to late Precambrian in age, and 5.9-6.0, corresponding to metamorphic basement. A comparison of the velocity models with the available drill hole information and seismic reflection profiles shows strong velocity variations in a given geologic formation, depending on the depth and location of the formation. The depth to metamorphic basement beneath the Palmyride fold belt clearly shows a deep trough, filled with Phanerozoic sedimentary rocks. These rocks decrease in thickness from about 11 km in the southwest to about 9 km in the central segment of the belt. The basement depth is about 6 km in the Aleppo plateau and not less than 8 km in the Rutbah uplift. Deeper basement in the Rutbah uplift is probably the result of a Precambrian rifting episode, clearly identified to the south in Jordan and Saudi Arabia. Cenozoic crustal shortening of about 20-25% across the southwestern segment of the Palmyride belt has not been sufficient to substantially reduce the size of the basement trough beneath this mountain belt. Finally, northeast decreasing basement depth in the Palmyrides supports the idea that the Palmyride Mesozoic rifting was developed as an aulacogen of the rifted Levantine margin along the eastern Mediterranean
- …
