1,793 research outputs found

    The use of live attenuated bacteria as a delivery system for heterologous antigens

    No full text
    Live attenuated mutants of several pathogenic bacteria have been exploited as potential vaccine vectors for heterologous antigen delivery by the mucosal route. Such live vectors offer the advantage of potential delivery in a single oral, intranasal or inhalational dose, stimulating both systemic and mucosal immune responses. Over the years, a range of strategies have been developed to allow controlled and stable delivery of antigens and improved immunogenicity where required. Most of these approaches have been evaluated in Salmonella vaccine vectors and, as a result, several live attenuated recombinant Salmonella vaccines are now in human clinical trials. In this review, these strategies and their use in the development of a delivery system for the Yersinia pestis V antigen are described

    Southeastern Conference Introduces Working Group on Compliance, Enforcement and Governance

    Get PDF
    UM law professor Ron Rychlak among nine representatives on pane

    SEC Network Coverage Plans For SEC Symposium Announced

    Get PDF
    Second Annual SEC Symposium, Focusing on Obesity Prevention, Set forSeptember 21-2

    Sadržaj

    Get PDF

    Parental Whole-Exome Sequencing Enables Sialidosis Type II Diagnosis due to an NEU1 Missense Mutation as an Underlying Cause of Nephrotic Syndrome in the Child.

    Get PDF
    Introduction: Monogenetic renal diseases, including recessively inherited nephrotic syndromes, represent a significant health burden despite being rare conditions. Precise diagnosis, including identification of the underlying molecular cause, is especially difficult in low-income countries and/or if affected individuals are unavailable for biochemical testing. Whole-exome sequencing (WES) has opened up novel diagnostic perspectives for these settings. However, sometimes the DNA of affected individuals is not suitable for WES due to low amounts or degradation. Methods: We report on the use of parental WES with implementation of specific stepwise variant filtering to identify the underlying molecular cause of the childhood-onset nephrotic syndrome as nephrosialidosis resulting from a mutation in NEU1. Results: Sequencing both parents enabled a nephrosialidosis diagnosis in the deceased child. To date, only 16 other cases of nephrosialidosis have been reported in the literature, with only 1 genetically confirmed case. After we reviewed the clinical information of all reported cases, we found that most patients presented with proteinuria, which started at between 2 and 3 years of age. Renal pathology showed mainly focal segmental glomerulosclerosis (FSGS)with vacuolated cells, and steroid treatment was always unsuccessful. Hepatomegaly was present in nearly all cases, whereas corneal clouding and a cherry red spot on the macula was observed in only approximately 50% of cases. Fourteen of 16 previously reported cases were no longer alive at the time of reporting. Conclusions: Our findings demonstrate the power of parental WES to diagnose rare genetic diseases, such as childhood-onset nephrotic syndrome. We further provide a comprehensive overview of the clinical course of nephrosialidosis and raise awareness of this ultra-rare condition as an underlying cause of FSGS

    Council Meeting

    Get PDF
    corecore