332 research outputs found

    Nature of non-magnetic strongly-correlated state in delta-plutonium

    Get PDF
    Ab-initio relativistic dynamical mean-field theory is applied to resolve the long-standing controversy between theory and experiment in the "simple" face-centered cubic phase of plutonium called delta-Pu. In agreement with experiment, neither static nor dynamical magnetic moments are predicted. In addition, the quasiparticle density of states reproduces not only the peak close to the Fermi level, which explains the large coefficient of electronic specific heat, but also main 5f features observed in photoelectron spectroscopy.Comment: 9 pages, 3 figure

    Spin glass behavior in URh_2Ge_2

    Get PDF
    URh_2Ge_2 occupies an extraordinary position among the heavy-electron 122-compounds, by exhibiting a previously unidentified form of magnetic correlations at low temperatures, instead of the usual antiferromagnetism. Here we present new results of ac and dc susceptibilities, specific heat and neutron diffraction on single-crystalline as-grown URh_2Ge_2. These data clearly indicate that crystallographic disorder on a local scale produces spin glass behavior in the sample. We therefore conclude that URh_2Ge_2 is a 3D Ising-like, random-bond, heavy-fermion spin glass.Comment: 10 pages, RevTeX, with 4 postscript figures, accepted by Physical Review Letters Nov 15, 199

    Stabilization of d-Band Ferromagnetism by Hybridization with Uncorrelated Bands

    Full text link
    We investigate the influence of s-d or p-d hybridization to d-band ferromagnetism to estimate the importance of hybridization for the magnetic properties of transition metals. To focus our attention to the interplay between hybridization and correlation we investigate a simple model system consisting of two non-degenerated hybridized bands, one strongly correlated, the other one quasi-free. To solve this extended Hubbard model, we apply simple approximations, namely SDA and MAA, that, concerning ferromagnetism in the single-band model, are known to give qualitatively satisfactory results. This approach allows us to discuss the underlying mechanism, by which d-band ferromagnetism is influenced by the hybridization on the basis of analytical expressions. The latter clearly display the order and the functional dependencies of the important effects. It is found, that spin-dependent inter-band particle fluctuations cause a spin-dependent band shift and a spin-dependent band broadening of the Hubbard bands. The shift stabilizes, the broadening tends to destabilize ferromagnetism. Stabilization requires relatively high band distances and small hybridization matrix elements. Super-exchange and RKKY coupling are of minor importance.Comment: 9 pages, 7 figures, accepted for PR
    corecore