2,578 research outputs found
Maternal obesity has little effect on the immediate offspring but impacts on the next generation
Maternal obesity during pregnancy has been linked to an increased risk of obesity and cardiometabolic disease in the offspring, a phenomenon attributed to developmental programming. Programming effects may be transmissible across generations through both maternal and paternal inheritance, although the mechanisms remain unclear. Using a mouse model, we explored the effects of moderate maternal diet-induced obesity (DIO) on weight gain and glucose-insulin homeostasis in first-generation (F1) and second-generation offspring. DIO was associated with insulin resistance, hyperglycemia and dyslipidemia before pregnancy. Birth weight was reduced in female offspring of DIO mothers (by 6%, P = .039), and DIO offspring were heavier than controls at weaning (males by 47%, females by 27%), however there were no differences in glucose tolerance, plasma lipids, or hepatic gene expression at 6 months. Despite the relative lack of effects in the F1, we found clear fetal growth restriction and persistent metabolic changes in otherwise unmanipulated second-generation offspring with effects on birth weight, insulin levels, and hepatic gene expression that were transmitted through both maternal and paternal lines. This suggests that the consequences of the current dietary obesity epidemic may also have an impact on the descendants of obese individuals, even when the phenotype of the F1 appears largely unaffected
Molecular genotyping of placental site and epithelioid trophoblastic tumours; female predominance
OBJECTIVE: To investigate a large series of placental site trophoblastic tumours (PSTT) and epithelioid trophoblastic tumours (ETT) and determine the relationship between their development and the type and sex of both the immediately antecedent and causative pregnancies. METHODS: The antecedent pregnancy was determined from patient records in 92 cases with a confirmed diagnosis of PSTT, ETT or mixed PSTT/ETT. In a subset of 57 cases, type and sex of the causative pregnancy was established by molecular genotyping of patient and tumour tissue microdissected from formalin-fixed, paraffin-embedded blocks. RESULTS: The antecedent pregnancy was a normal live birth in 59 (64%) cases, a hydatidiform mole in 19 (21%) and other pregnancy loss in 14 (15%). Where the sex was recorded, 36 (78%) of 46 antecedent normal pregnancies were female, a significantly greater proportion than expected (p<0.0001). Genotyping of 57 cases found 15 (26%) to derive from hydatidiform moles while 42 (74%) arose in non-molar pregnancies. Where the causative pregnancy was non-molar, 38 (91%) tumours arose in female conceptions, significantly greater than expected (p <0.0001). Analysis of short tandem repeats on the X chromosome in three tumours with an XY chromosomal constitution confirmed that the X chromosome was maternal in origin. CONCLUSIONS: PSTT and ETT predominantly arise in female pregnancies but can develop in male pregnancies. A male derived X chromosome is not required for the development of these tumours. While these tumours are predominantly female it is not because most originate in complete hydatidiform moles
Local amplification of glucocorticoids in the aging brain and impaired spatial memory
The hippocampus is a prime target for glucocorticoids (GCs) and a brain structure particularly vulnerable to ageing. Prolonged exposure to excess GCs compromises hippocampal electrophysiology, structure and function. Blood GC levels tend to increase with ageing and correlate with impaired spatial memory in ageing rodents and humans. The magnitude of GC action within tissues depends not only on levels of steroid hormone that enter the cells from the periphery and the density of intracellular receptors but also on the local metabolism of GCs by 11ß-hydroxysteroid dehydrogenases (11ß-HSD). The predominant isozyme in the adult brain, 11ß-HSD1, locally regenerates active GCs from inert 11-keto forms thus amplifying GC levels within specific target cells including in the hippocampus and cortex. Ageing associates with elevated hippocampal and neocortical 11ß-HSD1 and impaired spatial learning while deficiency of 11ß-HSD1 in knockout mice prevents the emergence of cognitive decline with age. Furthermore, short-term pharmacological inhibition of 11ß-HSD1 in already aged mice reverses spatial memory impairments. Here, we review research findings that support a key role for GCs with special emphasis on their intracellular regulation by 11ß-HSD1 in the emergence of spatial memory deficits with ageing, and discuss the use of 11ß-HSD1 inhibitors as a promising novel treatment in ameliorating/improving age-related memory impairments
Decreased glutathione biosynthesis contributes to EGFR T790M-driven erlotinib resistance in non-small cell lung cancer
Epidermal growth factor receptor (EGFR) inhibitors such as erlotinib are novel effective agents in the treatment of EGFR-driven lung cancer, but their clinical impact is often impaired by acquired drug resistance through the secondary T790M EGFR mutation. To overcome this problem, we analysed the metabonomic differences between two independent pairs of erlotinib-sensitive/resistant cells and discovered that glutathione (GSH) levels were significantly reduced in T790M EGFR cells. We also found that increasing GSH levels in erlotinib-resistant cells re-sensitised them, whereas reducing GSH levels in erlotinib-sensitive cells made them resistant. Decreased transcription of the GSH-synthesising enzymes (GCLC and GSS) due to the inhibition of NRF2 was responsible for low GSH levels in resistant cells that was directly linked to the T790M mutation. T790M EGFR clinical samples also showed decreased expression of these key enzymes; increasing intra-tumoural GSH levels with a small-molecule GST inhibitor re-sensitised resistant tumours to erlotinib in mice. Thus, we identified a new resistance pathway controlled by EGFR T790M and a therapeutic strategy to tackle this problem in the clinic
Enhanced hippocampal long-term potentiation and spatial learning in aged 11ß-hydroxysteroid dehydrogenase type 1 knock-out mice
Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies local intracellular ("intracrine") glucocorticoid action; in the brain it is highly expressed in the hippocampus. We investigated whether the impact of 11ß-HSD1 deficiency in knock-out mice (congenic on C57BL/6J strain) on cognitive function with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was enhanced in 12 month "middle-aged" and 24 month "aged" 11ß-HSD1<sup>–/–</sup> mice compared with age-matched congenic controls. These effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains (anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 11ß-HSD1<sup>–/–</sup> mice. Young 11ß-HSD1<sup>–/–</sup> mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not maintained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 11ß-HSD1<sup>–/–</sup> mice. These data suggest that 11ß-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis
Exclusion of the Locus for Autosomal Recessive Pseudohypoaldosteronism Type 1 from the Mineralocorticoid Receptor Gene Region on Human Chromosome 4q by Linkage Analysis.
Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocorticoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provdes evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families
Stable conditional expression and effect of C/EBPβ-LIP in adipocytes using the pSLIK system
Murine 3T3-L1 adipocytes are widely used as a cellular model of obesity. However, whereas transfection of 3T3-L1 preadipocytes is straightforward, ectopic gene expression in mature 3T3-L1 adipocytes has proved challenging. Here, we used the pSLIK vector system to generate stable doxycycline-inducible expression of the liver-enriched inhibitor protein isoform of CCAAT/enhancer binding protein (C/EBP) {beta} (C/EBP{beta}-LIP) in fully differentiated 3T3-L1 adipocytes. Because overexpression of C/EBP{beta}-LIP impairs adipocyte differentiation, the C/EBP{beta}-LIP construct was first integrated in 3T3-L1 preadipocytes but expression was induced only when adipocytes were fully differentiated. Increased C/EBP{beta}-LIP in mature adipocytes down-regulated C/EBP{beta} target genes including 11{beta}-hydroxysteroid dehydrogenase type 1, phosphoenolpyruvate carboxykinase and fatty acid binding protein 4, but had no effect on asparagine synthetase, demonstrating that transcriptional down-regulation by C/EBP{beta}-LIP in 3T3-L1 adipocytes is not a general effect. Importantly, these genes were modulated in a similar manner in adipose tissue of mice with genetically increased C/EBP{beta}-LIP levels. The use of the pSLIK system to conditionally express transgenes in 3T3-L1 cells could be a valuable tool to dissect adipocyte physiology
Nemo-like kinase regulates the expression of vascular endothelial growth factor (VEGF) lein alveolar epithelial cells
The canonical Wnt signaling can be silenced either through β-catenin-mediated ubiquitination and degradation or through phosphorylation of Tcf and Lef by nemo-like kinase (NLK). In the present study, we generated NLK deficient animals and found that these mice become cyanotic shortly before death because of lung maturation defects. NLK-/- lungs exhibited smaller and compressed alveoli and the mesenchyme remained thick and hyperplastic. This phenotype was caused by epithelial activation of vascular endothelial growth factor (VEGF) via recruitment of Lef1 to the promoter of VEGF. Elevated expression of VEGF and activation of the VEGF receptor through phosphorylation promoted an increase in the proliferation rate of epithelial and endothelial cells. In summary, our study identifies NLK as a novel signaling molecule for proper lung development through the interconnection between epithelial and endothelial cells during lung morphogenesis
- …
