66 research outputs found
Comprendre la différence entre cotation et indexation
Cette fiche pratique fournit des définitions et explications des opérations de cotation et indexation réalisées dans le cadre du traitement documentaire de collections
Origin and evolution of water oxidation before the last common ancestor of the Cyanobacteria
Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages towards the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria
Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.
In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EP/H00338X/2 to E.R. and EP/G037221/1, nanoDTC, to D.M.), the UK Biology and Biotechnological Sciences Research Council (BB/K002627/1 to A.W.R. and BB/K010220/1 to E.R.), a Marie Curie Intra-European Fellowship (PIEF-GA-2013-625034 to C.Y.L), a Marie Curie International Incoming Fellowship (PIIF-GA-2012-328085 RPSII to J.J.Z) and the CEA and the CNRS (to J.C.F.C.). A.W.R. holds a Wolfson Merit Award from the Royal Society.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/jacs.5b0373
The First State in the Catalytic Cycle of the Water-Oxidizing Enzyme: Identification of a Water-Derived µ-Hydroxo Bridge
Nature’s water-splitting catalyst, an oxygen-bridged tetramanganese calcium (Mn4O5Ca) complex, sequentially activates two substrate water molecules generating molecular O2. Its reaction cycle is composed of five intermediate (Si) states, where the index i indicates the number of oxidizing equivalents stored by the cofactor. After formation of the S4 state, the product dioxygen is released and the cofactor returns to its lowest oxidation state, S0. Membrane-inlet mass spectrometry measurements suggest that at least one substrate is bound throughout the catalytic cycle, as the rate of 18O-labeled water incorporation into the product O2 is slow, on a millisecond to second time scale depending on the S state. Here, we demonstrate that the Mn4O5Ca complex poised in the S0 state contains an exchangeable hydroxo bridge. On the basis of a combination of magnetic multiresonance (EPR) spectroscopies, comparison to biochemical models and theoretical calculations we assign this bridge to O5, the same bridge identified in the S2 state as an exchangeable fully deprotonated oxo bridge [Pérez Navarro, M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 15561]. This oxygen species is the most probable candidate for the slowly exchanging substrate water in the S0 state. Additional measurements provide new information on the Mn ions that constitute the catalyst. A structural model for the S0 state is proposed that is consistent with available experimental data and explains the observed evolution of water exchange kinetics in the first three states of the catalytic cycle
Perception des risques dans les IAA Cas de la Wilaya de Béjaia.
50 p. : ill. ; 30 cm. (+ CD-Rom)Le travail effectué consiste à mettre en évidence les différents risques auxquels sont confrontés les dirigeants des industries agroalimentaires au niveau de la wilaya de Béjaia. Une enquête par sondage a été menée dans 37 IAA, en contacte directe avec leurs gérants ceci en les soumettant à un questionnaire. Une analyse quantitative et qualitative a été accomplie. Les
résultats ont montré que la nature du risque dépend de l’activité de l’industrie et se caractérise par sa variété, ainsi que certaines caractéristiques des répondants influencent leur perception. Une cartographie des risques a été élaborée et les risques prioritaires ainsi déterminés
Electron transfer in photosystem II
Le photosystème II (PSII) est un complexe multi-protéique qui utilise l'énergie solaire pour oxyder l'eau et réduire des quinones. Le site catalytique d'oxydation de l'eau est localisé coté lumen du complexe, alors, que le site de réduction comprenant deux quinones (QA et QB) et un fer non-hémique est localisé sur le coté stromal du complexe membranaire. Dans cette thèse j'ai étudié les deux cotés accepteur et donneur d'électrons du PSII.QA•- et QB•- sont couplés magnétiquement au fer non-hémique donnant de faibles signaux RPE. Le fer non-hémique possède quatre ligands histidines et un ligand (bi)carbonate échangeable. Le formate peut échanger le ligand (bi)carbonate induisant un ralentissement dans le transfert d'électrons. Ici, je décris une modification du signal RPE de QB•- Fe2+ lorsque le formate est substitué au (bi)carbonate. J'ai aussi découvert un second signal RPE dû à la présence du formate à la place du (bi)carbonate lorsque QB est doublement réduit. De plus, j'ai trouvé que les signaux RPE natifs de QA•- Fe2+ et QB•- Fe2+ possèdent une signature intense encore jamais détectée. Tous les signaux RPE rapportés dans cette thèse devraient faciliter le titrage redox de QB par RPE. J'ai aussi observé que QB•- peut oxyder le fer non-hémique à l'obscurité en anaérobie. Cette observation implique qu'au moins dans une fraction des centres, le couple QB•-/QBH2 possède un potentiel redox plus haut que supposé. La quantification du nombre de centres où cette oxydation du fer se produit par le couple QB•-/QBH2 reste à faire. La réduction du PSII par le dithionite génère un signal modifié de QA•-Fe2+, un changement structural du PSII observé par électrophorèse. Cela peut indiquer la réduction d'un pont disulfure à l'intérieur du PSII. Concernant le site d’oxydation de l'eau, j'ai étudié la première étape de l'assemblage du site catalytique (Mn4Ca), en suivant l'oxydation du Mn2+ par RPE en bande X et haut champ. J'ai mis au point des conditions expérimentales permettant le piégeage du premier intermédiaire et j'ai aussi trouvé une incohérence avec des travaux publiés dans la littérature. J'ai aussi trouvé que le dithionite pouvait réduire le site catalytique Mn4Ca, en formant des états sur-réduits qui peuvent correspondre aux intermédiaires de l'assemblage du cluster Mn4Ca.Photosystem II (PSII) uses light energy to oxidise water and reduce quinone. The water oxidation site is a Mn4Ca cluster located on the luminal side of the membrane protein complex, while the quinone reduction site is made up of two quinones (QA and QB) and a non-heme Fe2+ located on the stromal side of the membrane protein. In this thesis I worked on both oxidation and reduction functions of the enzyme. QA•- and QB•- are magnetically couple to the Fe2+ giving weak and complex EPR signals. The distorted octahedral Fe2+ has four histidines ligands and an exchangeable (bi)carbonate ligand. Formate can displace the exchangeable (bi)carbonate ligand, slowing electron transfer out of the PSII reaction centre. Here I report the formate-modified QB•- Fe2+ EPR signal, and this shows marked spectral changes and has a greatly enhanced intensity. I also discovered a second new EPR signal from formate-treated PSII that is attributed to formate-modified QA•- Fe2+ in the presence of a 2-electron reduced form of QB. In addition, I found that the native QA•- Fe2+ and QB•- Fe2+ EPR signals have a strong feature that had been previously missed because of overlapping signals (mainly the stable tyrosyl radical TyrD•). These previously unreported EPR signals should allow for the redox potential of this cofactor to be directly determined for the first time. I also observed that when QB•-Fe was formed; it was able to oxidise the iron slowly in the dark. This occurred in samples pumped to remove O2. This observation implies that at least in some centres, the QB•-/QBH2 couple has a higher potential then is often assumed and thus that the protein-bound semiquinone is thermodynamically less stable expected. It has yet to be determined if this represents a situation occurring in the majority of centres. Treatment of the system with dithionite generated a modified form of QA•-Fe2+ state and a change in the association of the proteins on gels. This indicates a redox induced modification of the protein, possibly structurally important cysteine bridge in PSII.On the water oxidation side of the enzyme, I studied the first step in the assembly of the Mn4Ca cluster looking at Mn2+ oxidation using kinetic EPR and high field EPR. Conditions were found for stabilising the first oxidised state and some discrepancies with the literature were observed. I also found that dithionite could be used to reduce the Mn4Ca, forming states that are formally equivalent to those that exist during the assembly of the enzyme
- …
