610 research outputs found

    Tracing CP-violation in Lepton Flavor Violating Muon Decays

    Get PDF
    Although the Lepton Flavor Violating (LFV) decay μ+e+γ\mu^+\to e^+ \gamma is forbidden in the Standard Model (SM), it can take place within various theories beyond the SM. If the branching ratio of this decay saturates its present bound [{\it i.e.,} Br(μ+e+γ)1011(\mu^+ \to e^+\gamma)\sim 10^{-11}], the forthcoming experiments can measure the branching ratio with high precision and consequently yield information on the sources of LFV. In this letter, we show that for polarized μ+\mu^+, by studying the angular distribution of the transversely polarized positron and linearly polarized photon we can derive information on the CP-violating sources beyond those in the SM. We also study the angular distribution of the final particles in the decay μ+e1+ee2+\mu^+\to e^+_1 e^- e^+_2 where e1+e^+_1 is defined to be the more energetic positron. We show that transversely polarized e1+e_1^+ can provide information on a certain combination of the CP-violating phases of the underlying theory which would be lost by averaging over the spin of e1+e^+_1.Comment: 6 pages, 2 figure

    A review of the decoherent histories approach to the arrival time problem in quantum theory

    Full text link
    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding

    The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition

    Full text link
    We analytically derive the spectrum of gravitational waves due to magneto-hydrodynamical turbulence generated by bubble collisions in a first-order phase transition. In contrast to previous studies, we take into account the fact that turbulence and magnetic fields act as sources of gravitational waves for many Hubble times after the phase transition is completed. This modifies the gravitational wave spectrum at large scales. We also model the initial stirring phase preceding the Kolmogorov cascade, while earlier works assume that the Kolmogorov spectrum sets in instantaneously. The continuity in time of the source is relevant for a correct determination of the peak position of the gravitational wave spectrum. We discuss how the results depend on assumptions about the unequal-time correlation of the source and motivate a realistic choice for it. Our treatment gives a similar peak frequency as previous analyses but the amplitude of the signal is reduced due to the use of a more realistic power spectrum for the magneto-hydrodynamical turbulence. For a strongly first-order electroweak phase transition, the signal is observable with the space interferometer LISA.Comment: 46 pages, 17 figures. Replaced with revised version accepted for publication in JCA

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.

    Symmetric coupling of four spin-1/2 systems

    Full text link
    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.Comment: 20 pages, no figure

    Supersymmetric Axion-Neutrino Merger

    Get PDF
    The recently proposed supersymmetric A4A_4 model of the neutrino mass matrix is modified to merge with a previously proposed axionic solution of the strong CP problem. The resulting model has only one input scale, i.e. that of A4A_4 symmetry breaking, which determines both the seesaw neutrino mass scale and the axion decay constant. It also solves the μ\mu problem and conserves R parity automatically.Comment: 7 pages, no figur

    Polymer quantization of the free scalar field and its classical limit

    Full text link
    Building on prior work, a generally covariant reformulation of free scalar field theory on the flat Lorentzian cylinder is quantized using Loop Quantum Gravity (LQG) type `polymer' representations. This quantization of the {\em continuum} classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum- two point functions for long wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the "triangulation" ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.Comment: 58 page

    Stochastic String Motion Above and Below the World Sheet Horizon

    Get PDF
    We study the stochastic motion of a relativistic trailing string in black hole AdS_5. The classical string solution develops a world-sheet horizon and we determine the associated Hawking radiation spectrum. The emitted radiation causes fluctuations on the string both above and below the world-sheet horizon. In contrast to standard black hole physics, the fluctuations below the horizon are causally connected with the boundary of AdS. We derive a bulk stochastic equation of motion for the dual string and use the AdS/CFT correspondence to determine the evolution a fast heavy quark in the strongly coupled N=4\N=4 plasma. We find that the kinetic mass of the quark decreases by ΔM=γλT/2\Delta M=-\sqrt{\gamma \lambda}T/2 while the correlation time of world sheet fluctuations increases by γ\sqrt{\gamma}.Comment: 27 pages, 5 figures; v2 final version, small changes, references adde

    Alternative approach to b>sγb->s \gamma in the uMSSM

    Full text link
    The gluino contributions to the C7,8C'_{7,8} Wilson coefficients for b>sγb->s \gamma are calculated within the unconstrained MSSM. New stringent bounds on the δ23RL\delta^{RL}_{23} and δ23RR\delta^{RR}_{23} mass insertion parameters are obtained in the limit in which the SM and SUSY contributions to C7,8C_{7,8} approximately cancel. Such a cancellation can plausibly appear within several classes of SUSY breaking models in which the trilinear couplings exhibit a factorized structure proportional to the Yukawa matrices. Assuming this cancellation takes place, we perform an analysis of the b>sγb->s \gamma decay. We show that in a supersymmetric world such an alternative is reasonable and it is possible to saturate the b>sγb->s \gamma branching ratio and produce a CP asymmetry of up to 20%, from only the gluino contribution to C7,8C'_{7,8} coefficients. Using photon polarization a LR asymmetry can be defined that in principle allows for the C7,8C_{7,8} and C7,8C'_{7,8} contributions to the b>sγb->s \gamma decay to be disentangled. In this scenario no constraints on the ``sign of μ\mu'' can be derived.Comment: LaTeX2e, 23 pages, 7 ps figure, needs package epsfi

    Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung

    Full text link
    If the dark matter particle is a Majorana fermion, annihilations into two fermions and one gauge boson could have, for some choices of the parameters of the model, a non-negligible cross-section. Using a toy model of leptophilic dark matter, we calculate the constraints on the annihilation cross-section into two electrons and one weak gauge boson from the PAMELA measurements of the cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal astrophysical boost factor allowed in the Milky Way under the assumption that the leptophilic dark matter particle is the dominant component of dark matter in our Universe. These constraints constitute very conservative estimates on the boost factor for more realistic models where the dark matter particle also couples to quarks and weak gauge bosons, such as the lightest neutralino which we also analyze for some concrete benchmark points. The limits on the astrophysical boost factors presented here could be used to evaluate the prospects to detect a gamma-ray signal from dark matter annihilations at currently operating IACTs as well as in the projected CTA.Comment: 32 pages; 13 figure
    corecore