341 research outputs found
Discriminating different classes of biological networks by analyzing the graphs spectra distribution
The brain's structural and functional systems, protein-protein interaction,
and gene networks are examples of biological systems that share some features
of complex networks, such as highly connected nodes, modularity, and
small-world topology. Recent studies indicate that some pathologies present
topological network alterations relative to norms seen in the general
population. Therefore, methods to discriminate the processes that generate the
different classes of networks (e.g., normal and disease) might be crucial for
the diagnosis, prognosis, and treatment of the disease. It is known that
several topological properties of a network (graph) can be described by the
distribution of the spectrum of its adjacency matrix. Moreover, large networks
generated by the same random process have the same spectrum distribution,
allowing us to use it as a "fingerprint". Based on this relationship, we
introduce and propose the entropy of a graph spectrum to measure the
"uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon
divergences between graph spectra to compare networks. We also introduce
general methods for model selection and network model parameter estimation, as
well as a statistical procedure to test the nullity of divergence between two
classes of complex networks. Finally, we demonstrate the usefulness of the
proposed methods by applying them on (1) protein-protein interaction networks
of different species and (2) on networks derived from children diagnosed with
Attention Deficit Hyperactivity Disorder (ADHD) and typically developing
children. We conclude that scale-free networks best describe all the
protein-protein interactions. Also, we show that our proposed measures
succeeded in the identification of topological changes in the network while
other commonly used measures (number of edges, clustering coefficient, average
path length) failed
Conformal Enhancement of Holographic Scaling in Black Hole Thermodynamics: A Near-Horizon Heat-Kernel Framework
Standard thermodynamic treatments of quantum field theory in the presence of
black-hole backgrounds reproduce the black hole entropy by usually specializing
to the leading order of the heat-kernel or the high-temperature expansion. By
contrast, this work develops a hybrid framework centered on geometric spectral
asymptotics whereby these assumptions are shown to be unwarranted insofar as
black hole thermodynamics is concerned. The approach--consisting of the
concurrent use of near-horizon and heat-kernel asymptotic expansions--leads to
a proof of the holographic scaling of the entropy as a universal feature driven
by conformal quantum mechanics.Comment: 13 pages, JHEP style. Added section 3 in the new version and a few
typos were correcte
Improving RANSAC for Fast Landmark Recognition. Workshop on Visual Localization for Mobile Platforms
We introduce a procedure for recognizing and locating planar landmarks for mobile robot navigation, based in the detection and recognition of a set of interest points. We use RANSAC for fitting a homography and locating the land mark. Our main contribution is the introduction of a geometrical constraint that reduces the number of RANSAC iterations by discarding minimal subsets. In the experiments conducted we conclude that this constraint increases RANSAC performance by reducing in about 35% and 75%the number of iterations for affine and projective cameras, respectively
Prospects for the direct detection of neutralino dark matter in orbifold scenarios
We analyse the phenomenology of orbifold scenarios from the heterotic
superstring, and the resulting theoretical predictions for the direct detection
of neutralino dark matter. In particular, we study the parameter space of these
constructions, computing the low-energy spectrum and taking into account the
most recent experimental and astrophysical constraints, as well as imposing the
absence of dangerous charge and colour breaking minima. In the remaining
allowed regions the spin-independent part of the neutralino-proton cross
section is calculated and compared with the sensitivity of dark matter
detectors. In addition to the usual non universalities of the soft terms in
orbifold scenarios due to the modular weight dependence, we also consider
D-term contributions to scalar masses. These are generated by the presence of
an anomalous U(1), providing more flexibility in the resulting soft terms, and
are crucial in order to avoid charge and colour breaking minima. Thanks to the
D-term contribution, large neutralino detection cross sections can be found,
within the reach of projected dark matter detectors.Comment: 51 pages, 25 figure
Neutralino-Nucleon Cross Section and Charge and Colour Breaking Constraints
We compute the neutralino-nucleon cross section in several supersymmetric
scenarios, taking into account all kind of constraints. In particular, the
constraints that the absence of dangerous charge and colour breaking minima
imposes on the parameter space are studied in detail. In addition, the most
recent experimental constraints, such as the lower bound on the Higgs mass, the
branching ratio, and the muon are considered. The
astrophysical bounds on the dark matter density are also imposed on the
theoretical computation of the relic neutralino density, assuming thermal
production. This computation is relevant for the theoretical analysis of the
direct detection of dark matter in current experiments. We consider first the
supergravity scenario with universal soft terms and GUT scale. In this scenario
the charge and colour breaking constraints turn out to be quite important, and
\tan\beta\lsim 20 is forbidden. Larger values of can also be
forbidden, depending on the value of the trilinear parameter . Finally, we
study supergravity scenarios with an intermediate scale, and also with
non-universal scalar and gaugino masses where the cross section can be very
large.Comment: Final version to appear in JHE
Conformal Tightness of Holographic Scaling in Black Hole Thermodynamics
The near-horizon conformal symmetry of nonextremal black holes is shown to be
a mandatory ingredient for the holographic scaling of the scalar-field
contribution to the black hole entropy. This conformal tightness is revealed by
semiclassical first-principle scaling arguments through an analysis of the
multiplicative factors in the entropy due to the radial and angular degrees of
freedom associated with a scalar field. Specifically, the conformal SO(2,1)
invariance of the radial degree of freedom conspires with the area
proportionality of the angular momentum sums to yield a robust holographic
outcome.Comment: 23 pages, 1 figure. v2 & v3: expanded explanations and proofs,
references added, typos corrected; v3: published versio
Bubbles from Nothing
Within the framework of flux compactifications, we construct an instanton
describing the quantum creation of an open universe from nothing. The solution
has many features in common with the smooth 6d bubble of nothing solutions
discussed recently, where the spacetime is described by a 4d compactification
of a 6d Einstein-Maxwell theory on S^2 stabilized by flux. The four-dimensional
description of this instanton reduces to that of Hawking and Turok. The choice
of parameters uniquely determines all future evolution, which we additionally
find to be stable against bubble of nothing instabilities.Comment: 19 pages, 6 figure
Isometric Embedding of BPS Branes in Flat Spaces with Two Times
We show how non-near horizon p-brane theories can be obtained from two
embedding constraints in a flat higher dimensional space with 2 time
directions. In particular this includes the construction of D3 branes from a
flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The
worldvolume actions are determined by constant forms in the higher dimension,
reduced to the usual expressions by Lagrange multipliers. The formulation
affords insight in the global aspects of the spacetime geometries and makes
contact with recent work on two-time physics.Comment: 29 pages, 10 figures, Latex using epsf.sty and here.sty; v2:
reference added and some small correction
Inflation with racetrack superpotential and matter field
Several models of inflation with the racetrack superpotential for the volume
modulus coupled to a matter field are investigated. In particular, it is shown
that two classes of racetrack inflation models, saddle point and inflection
point ones, can be constructed in a fully supersymmetric framework with the
matter field F-term as a source of supersymmetry breaking and uplifting. Two
models of F-term supersymmetry breaking are considered: the Polonyi model and
the quantum corrected O'Raifeartaigh model. In the former case, both classes of
racetrack inflation models differ significantly from the corresponding models
with non-supersymmetric uplifting. The main difference is a quite strong
dominance of the inflaton by the matter field. In addition, fine-tuning of the
parameters is relaxed as compared to the original racetrack models. In the case
of the racetrack inflation models coupled to the O'Raifeartaigh model, the
matter field is approximately decoupled from the inflationary dynamics. In all
of the above models the gravitino mass is larger than the Hubble scale during
inflation. The possibility of having the gravitino much lighter than the Hubble
scale is also investigated. It is very hard to construct models with light
gravitino in which the volume modulus dominates inflation. On the other hand,
models in which the inflationary dynamics is dominated by the matter field are
relatively simple and seem to be more natural.Comment: 40 pages, 13 figures, references added, typos corrected, version to
be publishe
de Sitter String Vacua from Supersymmetric D-terms
We propose a new mechanism for obtaining de Sitter vacua in type IIB string
theory compactified on (orientifolded) Calabi-Yau manifolds similar to those
recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum
appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane,
which explicitly breaks supersymmetry. We accomplish the same goal by adding
fluxes of gauge fields within the D7-branes, which induce a D-term potential in
the effective 4D action. In this way we obtain dS space as a spontaneously
broken vacuum from a purely supersymmetric 4D action. We argue that our
approach can be directly extended to heterotic string vacua, with the dilaton
potential obtained from a combination of gaugino condensation and the D-terms
generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur
- …
