59 research outputs found
Live cell imaging of nuclear actin filaments and heterochromatic repair foci in <i>Drosophila</i> and mouse cells
Pericentromeric heterochromatin largely comprises repeated DNA sequences prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that ‘safe’ homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins generating directed motions. Understanding this pathway requires the ability to detect nuclear actin filaments that are significantly less abundant than cytoplasmic filaments, and to image and track repair sites for long time periods. Here we describe an optimized protocol for live cell imaging of nuclear F-actin in response to IR in Drosophila cells, and for repair focus tracking in mouse cells, including imaging setup, image processing approaches, and analytical methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.</jats:p
The Peroxisome Proliferator-Activated Receptor-γ Agonist Rosiglitazone Increases Bone Resorption in Women with Type 2 Diabetes: A Randomized, Controlled Trial
From 'Savages' to 'Unlawful Combatants': A Postcolonial Look at International Humanitarian Law's 'Other'
Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.</jats:p
- …
