9 research outputs found

    Quantum Mechanical Aspects of Cell Microtubules: Science Fiction or Realistic Possibility?

    Full text link
    Recent experimental research with marine algae points towards quantum entanglement at ambient temperature, with correlations between essential biological units separated by distances as long as 20 Angstr\"oms. The associated decoherence times, due to environmental influences, are found to be of order 400 fs. This prompted some authors to connect such findings with the possibility of some kind of quantum computation taking place in these biological entities: within the decoherence time scales, the cell "quantum calculates" the optimal "path" along which energy and signal would be transported more efficiently. Prompted by these experimental results, in this talk I remind the audience of a related topic proposed several years ago in connection with the possible r\^ole of quantum mechanics and/or field theory on dissipation-free energy transfer in microtubules (MT), which constitute fundamental cell substructures. Quantum entanglement between tubulin dimers was argued to be possible, provided there exists sufficient isolation from other environmental cell effects. The model was based on certain ferroelectric aspects of MT. In the talk I review the model and the associated experimental tests so far and discuss future directions, especially in view of the algae photo-experiments.Comment: 31 pages latex, 11 pdf figures, uses special macros, Invited Plenary Talk at DICE2010, Castello Pasquini, Castiglioncello (Italy), September 13-18 201

    Sixfold Enhancement of Superconductivity in a Tunable Electronic Nematic System

    No full text
    The electronic nematic phase -- in which electronic degrees of freedom lower the crystal rotational symmetry -- is commonly observed in high-temperature superconductors. However, understanding the role of nematicity and nematic fluctuations in Cooper pairing is often made more complicated by the coexistence of other orders, particularly long-range magnetic order. Here we report the enhancement of superconductivity in a model electronic nematic system that is not magnetic, and show that the enhancement is directly born out of strong nematic fluctuations associated with a quantum phase transition. We present measurements of the resistance as a function of strain in Ba11-xSrxNi2As2 to show that strontium substitution promotes an electronically driven nematic order in this system. In addition, the complete suppression of that order to absolute zero temperature leads to an enhancement of the pairing strength, as evidenced by a sixfold increase in the superconducting transition temperature. The direct relation between enhanced pairing and nematic fluctuations in this model system, as well as the interplay with a unidirectional charge-density-wave order comparable to that found in the cuprates, offers a means to investigate the role of nematicity in strengthening superconductivity

    MEDULLOBLASTOMA

    Full text link

    Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    No full text

    Synthesis and Functionalization of Indoles Through Palladium-catalyzed Reactions

    No full text

    Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes

    No full text
    corecore